Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4545, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917858

ABSTRACT

TGF-ß1, ß2 and ß3 bind a common receptor to exert vastly diverse effects in cancer, supporting either tumor progression by favoring metastases and inhibiting anti-tumor immunity, or tumor suppression by inhibiting malignant cell proliferation. Global TGF-ß inhibition thus bears the risk of undesired tumor-promoting effects. We show that selective blockade of TGF-ß1 production by Tregs with antibodies against GARP:TGF-ß1 complexes induces regressions of mouse tumors otherwise resistant to anti-PD-1 immunotherapy. Effects of combined GARP:TGF-ß1/PD-1 blockade are immune-mediated, do not require FcγR-dependent functions and increase effector functions of anti-tumor CD8+ T cells without augmenting immune cell infiltration or depleting Tregs within tumors. We find GARP-expressing Tregs and evidence that they produce TGF-ß1 in one third of human melanoma metastases. Our results suggest that anti-GARP:TGF-ß1 mAbs, by selectively blocking a single TGF-ß isoform emanating from a restricted cellular source exerting tumor-promoting activity, may overcome resistance to PD-1/PD-L1 blockade in patients with cancer.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Drug Resistance, Neoplasm/drug effects , Membrane Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Transforming Growth Factor beta1/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor/transplantation , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/immunology , HEK293 Cells , Humans , Membrane Proteins/metabolism , Mice , Neoplasms/immunology , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/metabolism
2.
MAbs ; 8(6): 1126-35, 2016.
Article in English | MEDLINE | ID: mdl-27211075

ABSTRACT

The identification of functional monoclonal antibodies directed against G-protein coupled receptors (GPCRs) is challenging because of the membrane-embedded topology of these molecules. Here, we report the successful combination of llama DNA immunization with scFv-phage display and selections using virus-like particles (VLP) and the recombinant extracellular domain of the GPCR glucagon receptor (GCGR), resulting in glucagon receptor-specific antagonistic antibodies. By immunizing outbred llamas with plasmid DNA containing the human GCGR gene, we sought to provoke their immune system, which generated a high IgG1 response. Phage selections on VLPs allowed the identification of mAbs against the extracellular loop regions (ECL) of GCGR, in addition to multiple VH families interacting with the extracellular domain (ECD) of GCGR. Identifying mAbs binding to the ECL regions of GCGR is challenging because the large ECD covers the small ECLs in the energetically most favorable 'closed conformation' of GCGR. Comparison of Fab with scFv-phage display demonstrated that the multivalent nature of scFv display is essential for the identification of GCGR specific clones by selections on VLPs because of avid interaction. Ten different VH families that bound 5 different epitopes on the ECD of GCGR were derived from only 2 DNA-immunized llamas. Seven VH families demonstrated interference with glucagon-mediated cAMP increase. This combination of technologies proved applicable in identifying multiple functional binders in the class B GPCR context, suggesting it is a robust approach for tackling difficult membrane proteins.


Subject(s)
Antibodies, Monoclonal/immunology , Immunization , Immunodominant Epitopes/immunology , Receptors, Glucagon/antagonists & inhibitors , Single-Chain Antibodies/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/isolation & purification , Antibody Specificity , Antimicrobial Cationic Peptides , CHO Cells , Camelids, New World/immunology , Cathelicidins/immunology , Cell Surface Display Techniques , Cells, Cultured , Cricetulus , Fibroblasts , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/blood , Immunoglobulin Fab Fragments/immunology , Membrane Proteins , Plasmids/genetics , Plasmids/immunology , Receptors, Glucagon/genetics , Receptors, Glucagon/immunology , Single-Chain Antibodies/blood
3.
Cancer Res ; 75(16): 3373-83, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26141862

ABSTRACT

Hepatocyte growth factor (HGF) and its receptor MET represent validated targets for cancer therapy. However, HGF/MET inhibitors being explored as cancer therapeutics exhibit cytostatic activity rather than cytotoxic activity, which would be more desired. In this study, we engineered an antagonistic anti-MET antibody that, in addition to blocking HGF/MET signaling, also kills MET-overexpressing cancer cells by antibody-dependent cellular cytotoxicity (ADCC). As a control reagent, we engineered the same antibody in an ADCC-inactive form that is similarly capable of blocking HGF/MET activity, but in the absence of any effector function. In comparing these two antibodies in multiple mouse models of cancer, including HGF-dependent and -independent tumor xenografts, we determined that the ADCC-enhanced antibody was more efficacious than the ADCC-inactive antibody. In orthotopic mammary carcinoma models, ADCC enhancement was crucial to deplete circulating tumor cells and to suppress metastases. Prompted by these results, we optimized the ADCC-enhanced molecule for clinical development, generating an antibody (ARGX-111) with improved pharmacologic properties. ARGX-111 competed with HGF for MET binding, inhibiting ligand-dependent MET activity, downregulated cell surface expression of MET, curbing HGF-independent MET activity, and engaged natural killer cells to kill MET-expressing cancer cells, displaying MET-specific cytotoxic activity. ADCC assays confirmed the cytotoxic effects of ARGX-111 in multiple human cancer cell lines and patient-derived primary tumor specimens, including MET-expressing cancer stem-like cells. Together, our results show how ADCC provides a therapeutic advantage over conventional HGF/MET signaling blockade and generates proof-of-concept for ARGX-111 clinical testing in MET-positive oncologic malignancies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity/drug effects , Hepatocyte Growth Factor/metabolism , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/drug effects , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Binding, Competitive , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Flow Cytometry , Humans , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Proto-Oncogene Proteins c-met/immunology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
4.
Sci Transl Med ; 7(284): 284ra56, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25904740

ABSTRACT

Regulatory T cells (Tregs) are essential to prevent autoimmunity, but excessive Treg function contributes to cancer progression by inhibiting antitumor immune responses. Tregs exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-ß1 (TGF-ß1). On the Treg cell surface, TGF-ß1 is in an inactive form bound to membrane protein GARP and then activated by an unknown mechanism. We demonstrate that GARP is involved in this activation mechanism. Two anti-GARP monoclonal antibodies were generated that block the production of active TGF-ß1 by human Tregs. These antibodies recognize a conformational epitope that requires amino acids GARP137-139 within GARP/TGF-ß1 complexes. A variety of antibodies recognizing other GARP epitopes did not block active TGF-ß1 production by Tregs. In a model of xenogeneic graft-versus-host disease in NSG mice, the blocking antibodies inhibited the immunosuppressive activity of human Tregs. These antibodies may serve as therapeutic tools to boost immune responses to infection or cancer via a mechanism of action distinct from that of currently available immunomodulatory antibodies. Used alone or in combination with tumor vaccines or antibodies targeting the CTLA4 or PD1/PD-L1 pathways, blocking anti-GARP antibodies may improve the efficiency of cancer immunotherapy.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunosuppressive Agents/chemistry , Membrane Proteins/chemistry , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta1/chemistry , Animals , Autoimmunity , Epitopes/chemistry , Graft vs Host Disease , Humans , Membrane Proteins/metabolism , Methylation , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Protein Binding , Protein Conformation , Transforming Growth Factor beta1/metabolism
5.
J Clin Invest ; 124(7): 3172-86, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24865428

ABSTRACT

Activation of MET by HGF plays a key role in tumor progression. Using a recently developed llama platform that generates human-like immunoglobulins, we selected 68 different antibodies that compete with HGF for binding to MET. HGF-competing antibodies recognized 4 distinct hotspots localized in different MET domains. We identified 1 hotspot that coincides with the known HGF ß chain binding site on blades 2-3 of the SEMA domain ß-propeller. We determined that a second and a third hotspot lie within blade 5 of the SEMA domain and IPT domains 2-3, both of which are thought to bind to HGF α chain. Characterization of the fourth hotspot revealed a region across the PSI-IPT 1 domains not previously associated with HGF binding. Individual or combined targeting of these hotspots effectively interrupted HGF/MET signaling in multiple cell-based biochemical and biological assays. Selected antibodies directed against SEMA blades 2-3 and the PSI-IPT 1 region inhibited brain invasion and prolonged survival in a glioblastoma multiforme model, prevented metastatic disease following neoadjuvant therapy in a triple-negative mammary carcinoma model, and suppressed cancer cell dissemination to the liver in a KRAS-mutant metastatic colorectal cancer model. These results identify multiple regions of MET responsible for HGF-mediated tumor progression, unraveling the complexity of HGF-MET interaction, and provide selective molecular tools for targeting MET activity in cancer.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Hepatocyte Growth Factor/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Animals , Antibodies, Monoclonal , Antibody Affinity , Binding Sites , Binding, Competitive , Brain Neoplasms/pathology , Camelids, New World , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Glioblastoma/pathology , Hepatocyte Growth Factor/chemistry , Hepatocyte Growth Factor/immunology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins c-met/chemistry
6.
J Pathol ; 217(3): 327-44, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19142887

ABSTRACT

Telomeres, the ends of eukaryotic chromosomes, have been the subject of intense investigation over the last decade. As telomere dysfunction has been associated with ageing and developing cancer, understanding the exact mechanisms regulating telomere structure and function is essential for the prevention and treatment of human cancers and age-related diseases. The mechanisms by which cells maintain telomere lengthening involve either telomerase or the alternative lengthening of the telomere pathway, although specific mechanisms of the latter and the relationship between the two are as yet unknown. Many cellular factors directly (TRF1/TRF2) and indirectly (shelterin-complex, PinX, Apollo and tankyrase) interact with telomeres, and their interplay influences telomere structure and function. One challenge comes from the observation that many DNA damage response proteins are stably associated with telomeres and contribute to several other aspects of telomere function. This review focuses on the different components involved in telomere maintenance and their role in telomere length homeostasis. Special attention is paid to understanding how these telomere-associated factors, and mainly those involved in double-strand break repair, perform their activities at the telomere ends.


Subject(s)
DNA Repair Enzymes/metabolism , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Apoptosis , Cell Cycle Proteins/metabolism , Cellular Senescence/physiology , DNA Repair , Humans , Neoplasms/metabolism , Neoplasms/ultrastructure , Telomerase/metabolism , Telomere/ultrastructure
7.
J Bone Miner Res ; 24(1): 70-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18767926

ABSTRACT

Giant cell tumor of bone (GCTB) is a benign bone tumor with a shown clinical behavior of local recurrences and rare distant metastases. GCTB is composed of uniformly distributed osteoclastic giant cells, thought to originate from the fusion of monocyte-macrophage lineage cells, in a background consisting of mononuclear rounded cells and spindle-shaped cells. Several reports showed the specific expression of markers, such as CD14 on the mononuclear rounded cell population, however, lacking osteoclastic giant cells. Blood monocytes that were CD14+, CD33+, or CD14+/CD33+ have also been shown to be programmed as pre-osteoclasts. The macrophage marker CD33 is expressed earlier than CD14 in macrophage maturation, whereas CD14 is expressed longer than CD33. The aim of this study was to investigate CD14/CD33 expression profiles in GCTB. Nineteen GCTB tumor samples of 19 patients were studied. Immunofluorescent analyses were performed with monoclonal antibodies against CD14, CD33, RANK, and CD51. To unambiguously further prove the expression of these molecules, quantitative RT-PCR was used with subsequent sequencing of its products. All samples showed similar immunoreactivity profiles. The mononuclear rounded cell population was positive for RANK, CD51, CD14, and CD33. The osteoclastic giant cell population expressed RANK and CD51, as well as CD33, but was consistently negative for CD14 expression. The CD14 and CD33 profiles were confirmed by quantitative RT-PCR. These RT-PCR products were sequence verified. Osteoclasts in GCTB are the result of fusion of CD33-expressing pre-osteoclasts that further fuse with CD14+ mononuclear cells. Although these results reflect a static rather than a dynamic spectrum, we strongly believe that osteoclastogenesis seems not to be the exclusive result of fusion of intratumoral CD14+ mononuclear cells. Moreover, CD33-modulated osteoclastogenesis opens up the possibility for novel therapeutic directions.


Subject(s)
Antigens, CD/biosynthesis , Antigens, Differentiation, Myelomonocytic/biosynthesis , Bone Neoplasms/metabolism , Giant Cell Tumors/metabolism , Lipopolysaccharide Receptors/biosynthesis , Osteoclasts/metabolism , Adolescent , Adult , Female , Humans , Integrin alphaV/biosynthesis , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Neoplasm Metastasis , Receptor Activator of Nuclear Factor-kappa B/biosynthesis , Sialic Acid Binding Ig-like Lectin 3
8.
Antiviral Res ; 74(2): 111-24, 2007 May.
Article in English | MEDLINE | ID: mdl-17097156

ABSTRACT

A dual chamber system was established to model heterosexual HIV transmission. Cell-associated, but not cell-free HIV, added to a confluent layer of cervical epithelial cells in the apical chamber, reproducibly infected monocyte-derived dendritic cells (MO-DC) and CD4(+) T cells in the basal compartment. Only minimal epithelial transmigration of HIV-infected mononuclear cells (HIV-PBMCs) was observed. Most evidence points to transepithelial migration of virus, released from HIV-PBMCs after their activation by epithelial cells. We used this model for evaluation of the therapeutic index of various potentially preventive antiviral compounds, including non-nucleoside reverse transcriptase inhibitors (NNRTIs, including UC781 and various diaryltriazines and diarylpyrimidines), poly-anionic entry inhibitors (including PRO2000, cellulose sulphate, dextrane sulphate 5000 and polystyrene sulphonate) and the fusion inhibitor T-20. The epithelium was pre-treated with compound and incubated with HIV-PBMCs for 24 h. Afterwards the apical chamber was removed and MO-DC/CD4(+) T cell co-cultures were further cultured without compound. NNRTIs, including a TMC120 gel, blocked infection of the sub-epithelial targets at sub-micromolar concentrations. Polyanionic entry inhibitors (up to 100 microg/ml) and T-20 (up to 449 microg/ml) failed to inhibit transmission. Moreover, whereas the NNRTIs used interfered with epithelial integrity with cervical epithelium only at very high concentrations, the evaluated entry inhibitors showed toxicity at concentrations that did not prevent infection.


Subject(s)
Anti-HIV Agents/pharmacology , Cell Culture Techniques/methods , Cervix Uteri/virology , HIV Infections/transmission , HIV-1/drug effects , CD4-Positive T-Lymphocytes/virology , Cell Line , Cells, Cultured , Coculture Techniques , Dendritic Cells/virology , Epithelial Cells/virology , Female , Flow Cytometry , HIV Infections/prevention & control , HIV-1/growth & development , Humans , Microscopy, Confocal , Mucous Membrane/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...