Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(4): 1843-1850, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35044161

ABSTRACT

When in contact with oxidizing media, UO2 pellets used as nuclear fuel may transform into U4O9, U3O7, and U3O8. The latter starts forming by stress-induced phase transformation only upon cracking of the pristine U3O7 and is associated with a 36% volumetric expansion with respect to the initial UO2. This may pose a safety issue for spent nuclear fuel (SNF) management as it could imply a confinement failure and hence dispersion of radionuclides within the environment. In this work, UO2 with different grain sizes (representative of the grain size in different radial positions in the SNF) was oxidized in air at 300 °C, and the oxidation mechanisms were investigated using in situ synchrotron X-ray diffraction. The formation of U3O8 was detected only in UO2 pellets with larger grains (3.08 ± 0.06 µm and 478 ± 17 nm), while U3O8 did not develop in sintered UO2 with a grain size of 163 ± 9 nm. This result shows that, in dense materials, a sufficiently fine microstructure inhibits both the cracking of U3O7 and the subsequent formation of U3O8. Hence, the nanostructure prevents the material from undergoing significant volumetric expansion. Considering that the peripheral region of SNF is constituted by the high burnup structure, characterized by 100-300 nm-sized grains and micrometric porosity, these findings are relevant for a better understanding of the spent nuclear fuel behavior and hence for the safety of the nuclear waste storage.

2.
Materials (Basel) ; 14(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34772065

ABSTRACT

The transmutation of minor actinides (in particular, Np and Am), which are among the main contributors to spent fuel α-radiotoxicity, was studied in the SUPERFACT irradiation. Several types of transmutation UO2-based fuels were produced, differing by their minor actinide content (241Am, 237Np, Pu), and irradiated in the Phénix fast reactor. Due to the high content in rather short-lived alpha-decaying actinides, both the archive, but also the irradiated fuels, cumulated an alpha dose during a laboratory time scale, which is comparable to that of standard LWR fuels during centuries/millenaries of storage. Transmission Electron Microscopy was performed to assess the evolution of the microstructure of the SUPERFACT archive and irradiated fuel. This was compared to conventional irradiated spent fuel (i.e., after years of storage) and to other 238Pu-doped UO2 for which the equivalent storage time would span over centuries. It could be shown that the microstructure of these fluorites does not degrade significantly from low to very high alpha-damage doses, and that helium bubbles precipitate.

3.
Sci Rep ; 9(1): 15082, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31636390

ABSTRACT

The low-temperature heat capacity of (U1-yThy)O2 and 238Pu-doped UO2 samples were determined using hybrid adiabatic relaxation calorimetry. Results of the investigated systems revealed the presence of the magnetic transition specific for UO2 in all three intermediate compositions of the uranium-thorium dioxide (y = 0.05, 0.09 and 0.12) and in the 238Pu-doped UO2 around 25 K. The magnetic behaviour of UO2 exposed to the high alpha dose from the 238Pu isotope was studied over time and it was found that 1.6% 238Pu affects the magnetic transition substantially, even after short period of time after annealing. In both systems the antiferromagnetic transition changes intensity, shape and Néel temperature with increasing Th-content and radiation dose, respectively, related to the increasing disorder on the crystal lattice resulting from substitution and defect creation.

SELECTION OF CITATIONS
SEARCH DETAIL
...