Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 8(9): 2059-2073, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38266153

ABSTRACT

ABSTRACT: Novel therapies are needed for effective treatment of acute myeloid leukemia (AML). Relapse is common and salvage treatment with cytotoxic chemotherapy is rarely curative. CD123 and CD33, 2 clinically validated targets in AML, are jointly expressed on blasts and leukemic stem cells in >95% of patients with AML. However, their expression is heterogenous between subclones and between patients, which may affect the efficacy of single-targeting agents in certain patient populations. We present here a dual-targeting CD33/CD123 NANOBODY T-cell engager (CD33/CD123-TCE) that was designed to decrease the risk of relapse from possible single antigen-negative clones and to increase coverage within and across patients. CD33/CD123-TCE killed AML tumor cells expressing 1 or both antigens in vitro. Compared with single-targeting control compounds, CD33/CD123-TCE conferred equal or better ex vivo killing of AML blasts in most primary AML samples tested, suggesting a broader effectiveness across patients. In a disseminated cell-line-derived xenograft mouse model of AML, CD33/CD123-TCE cleared cancer cells in long bones and in soft tissues. As cytokine release syndrome is a well-documented adverse effect of TCE, the compound was tested in a cytokine release assay and shown to induce less cytokines compared to a CD123 single-targeting control. In an exploratory single-dose nonhuman primate study, CD33/CD123-TCE revealed a favorable PK profile. Depletion of CD123 and CD33 expressing cells was observed, but there were neither signs of cytokine release syndrome nor clinical signs of toxicity. Taken together, the CD33/CD123 dual-targeting NANOBODY TCE exhibits potent and safe anti-AML activity and promises a broad patient coverage.


Subject(s)
Interleukin-3 Receptor alpha Subunit , Leukemia, Myeloid, Acute , Sialic Acid Binding Ig-like Lectin 3 , Single-Domain Antibodies , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-3 Receptor alpha Subunit/immunology , Animals , Mice , Single-Domain Antibodies/therapeutic use , Single-Domain Antibodies/pharmacology , Xenograft Model Antitumor Assays , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cell Line, Tumor , Female
2.
Pharmacol Ther ; 169: 47-56, 2017 01.
Article in English | MEDLINE | ID: mdl-27373507

ABSTRACT

Local pulmonary delivery of biotherapeutics may offer advantages for the treatment of lung diseases. Delivery of the therapeutic entity directly to the lung has the potential for a rapid onset of action, reduced systemic exposure and the need for a lower dose, as well as needleless administration. However, formulation of a protein for inhaled delivery is challenging and requires proteins with favorable biophysical properties suitable to withstand the forces associated with formulation, delivery, and inhalation devices. Nanobodies are the smallest functional fragments derived from a naturally occurring heavy chain-only immunoglobulin. They are highly soluble, stable, and show biophysical characteristics that are particularly well suited for pulmonary delivery. This paper highlights a number of clinical and preclinical studies on antibodies delivered via the pulmonary route and describes the advantages of using Nanobodies for inhaled delivery to the lung. The latter is illustrated by the specific example of ALX-0171, a Nanobody in clinical development for the treatment of respiratory syncytial virus (RSV) infections.


Subject(s)
Drug Delivery Systems , Lung Diseases/drug therapy , Single-Domain Antibodies/administration & dosage , Administration, Inhalation , Animals , Drug Design , Humans , Lung Diseases/immunology , Lung Diseases/physiopathology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/immunology
3.
Microb Cell Fact ; 15: 98, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27267127

ABSTRACT

BACKGROUND: Over the last few decades the methylotrophic yeast Pichia pastoris has become a popular host for a wide range of products such as vaccines and therapeutic proteins. Several P. pastoris engineered strains and mutants have been developed to improve the performance of the expression system. Yield and quality of a recombinant product are important parameters to monitor during the host selection and development process but little information is published regarding quality differences of a product produced by different P. pastoris strains. RESULTS: We compared titer and quality of several Nanobodies(®) produced in wild type and Mut(S) strains. Titer in fed-batch fermentation was comparable between all strains for each Nanobody but a significant difference in quality was observed. Nanobodies expressed in Mut(S) strains contained a product variant with a Δ-16 Da mass difference that was not observed in wild type strains. This variant showed substitution of methionine residues due to misincorporation of O-methyl-L-homoserine, also called methoxine. Methoxine is likely synthesized by the enzymatic action of O-acetyl homoserine sulfhydrylase and we confirmed that Nanobodies produced in the corresponding knock-out strain contained no methoxine variants. We could show the incorporation of methoxine during biosynthesis by its addition to the culture medium. CONCLUSION: We showed that misincorporation of methoxine occurs particularly in P. pastoris Mut(S) strains. This reduction in product quality could outweigh the advantages of using Mut strains, such as lower oxygen and methanol demand, heat formation and in some cases improved expression. Methoxine incorporation in recombinant proteins is likely to occur when an excess of methanol is present during fermentation but can be avoided when the methanol feed rate protocol is carefully designed.


Subject(s)
Homoserine/analogs & derivatives , Methanol/metabolism , Methionine/metabolism , Pichia/metabolism , Aldehyde Oxidase/genetics , Carbon/metabolism , Chromatography, High Pressure Liquid , Fungal Proteins/genetics , Genotype , Homoserine/biosynthesis , Homoserine/chemistry , Methionine/chemistry , Pichia/genetics , Pichia/growth & development , Plasmids/genetics , Plasmids/metabolism , Single-Domain Antibodies/analysis , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Spectrometry, Mass, Electrospray Ionization
4.
J Virol ; 82(1): 435-50, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17942551

ABSTRACT

Protein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptides that bound with moderate to high affinity subsequently was assessed using HLA transgenic mice (CTL) and HLA cross-reacting H-2(bxd) (BALB/c x C57BL/6J) mice (HTL). Through this process, 30 CTL and 16 HTL epitopes were selected as a set that would be the most useful for vaccine design, based on epitope conservation among HBV sequences and HLA-based predicted population coverage in diverse ethnic groups. A plasmid DNA-based vaccine encoding the epitopes as a single gene product, with each epitope separated by spacer residues to enhance appropriate epitope processing, was designed. Immunogenicity testing in mice demonstrated the induction of multiple CTL and HTL responses. Furthermore, as a complementary approach, mass spectrometry allowed the identification of correctly processed and major histocompatibility complex-presented epitopes from human cells transfected with the DNA plasmid. A heterologous prime-boost immunization with the plasmid DNA and a recombinant MVA gave further enhancement of the immune responses. Thus, a multiepitope therapeutic vaccine candidate capable of stimulating those cellular immune responses thought to be essential for controlling and clearing HBV infection was successfully designed and evaluated in vitro and in HLA transgenic mice.


Subject(s)
Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Hepatitis B Vaccines/genetics , Hepatitis B Vaccines/immunology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Immunotherapy/methods , Animals , Female , Hepatitis B Vaccines/therapeutic use , Hepatitis B virus/immunology , Immunization, Secondary , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasmids/genetics , Plasmids/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccinia virus/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...