Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Evol Biol ; 16: 182, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27600545

ABSTRACT

BACKGROUND: Cassava mosaic disease (CMD) in Madagascar is caused by a complex of at least six African cassava mosaic geminivirus (CMG) species. This provides a rare opportunity for a comparative study of the evolutionary and epidemiological dynamics of distinct pathogenic crop-infecting viral species that coexist within the same environment. The genetic and spatial structure of CMG populations in Madagascar was studied and Bayesian phylogeographic modelling was applied to infer the origins of Madagascan CMG populations within the epidemiological context of related populations situated on mainland Africa and other south western Indian Ocean (SWIO) islands. RESULTS: The isolation and analysis of 279 DNA-A and 117 DNA-B sequences revealed the presence in Madagascar of four prevalent CMG species (South African cassava mosaic virus, SACMV; African cassava mosaic virus, ACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV), and of numerous CMG recombinants that have, to date, only ever been detected on this island. SACMV and ACMV, the two most prevalent viruses, displayed low degrees of genetic diversity and have most likely been introduced to the island only once. By contrast, EACMV-like CMG populations (consisting of East African cassava mosaic virus, EAMCKV, EACMCV and complex recombinants of these) were more diverse, more spatially structured, and displayed evidence of at least three independent introductions from mainland Africa. Although there were no statistically supported virus movement events between Madagascar and the other SWIO islands, at least one mainland African ACMV variant likely originated in Madagascar. CONCLUSIONS: Our study highlights both the complexity of CMD in Madagascar, and the distinct evolutionary and spatial dynamics of the different viral species that collectively are associated with this disease. Given that more distinct CMG species and recombinants have been found in Madagascar than any other similarly sized region of the world, the risks of recombinant CMG variants emerging on this island are likely to be higher than elsewhere. Evidence of an epidemiological link between Madagascan and mainland African CMGs suggests that the consequences of such emergence events could reach far beyond the shores of this island.


Subject(s)
Begomovirus/genetics , Biological Evolution , Manihot/virology , Bayes Theorem , DNA, Viral/genetics , Genetic Variation , Madagascar , Phylogeography , Plant Diseases/virology , Recombination, Genetic
2.
Arch Virol ; 160(11): 2887-90, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26255054

ABSTRACT

This is the first description of the complete genome sequence of a new bipartite begomovirus isolated from tomato (Solanum lycopersicum) in French Guiana, for which we propose the tentative name "tomato chlorotic mottle Guyane virus" (ToCMoGFV). DNA-A and -B nucleotide sequences of ToCMoGFV are only distantly related to known New World begomoviruses. They share the highest nucleotide sequence identity of 80% with the Brazilian isolates of macroptilium yellow spot virus (MacYSV) and 73% with soybean chlorotic spot virus (SBCSV). Phylogenetic analysis demonstrated that this novel virus belongs to a new lineage of New World bipartite begomoviruses. The discovery of this new virus confirms the high genetic diversity of begomoviruses in Latin America.


Subject(s)
Begomovirus/isolation & purification , Begomovirus/physiology , Plant Diseases/virology , Solanum lycopersicum/virology , Base Sequence , Begomovirus/classification , Begomovirus/genetics , French Guiana , Genome, Viral , Molecular Sequence Data , Phylogeny
3.
Arch Virol ; 160(6): 1589-91, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25900620

ABSTRACT

Here, we describe for the first time the complete genome sequence of a new bipartite begomovirus in Madagascar isolated from the weed Asystasia gangetica (Acanthaceae), for which we propose the tentative name asystasia mosaic Madagascar virus (AMMGV). DNA-A and -B nucleotide sequences of AMMGV were only distantly related to known begomovirus sequence and shared highest nucleotide sequence identity of 72.9 % (DNA-A) and 66.9 % (DNA-B) with a recently described bipartite begomovirus infecting Asystasia sp. in West Africa. Phylogenetic analysis demonstrated that this novel virus from Madagascar belongs to a new lineage of Old World bipartite begomoviruses.


Subject(s)
Acanthaceae/virology , Begomovirus/genetics , Plant Diseases/virology , Base Sequence , Madagascar/epidemiology , Molecular Sequence Data , Phylogeny , Sequence Alignment
4.
Methods Mol Biol ; 1115: 257-77, 2014.
Article in English | MEDLINE | ID: mdl-24415479

ABSTRACT

Initially designed to infer evolutionary relationships based on morphological and physiological characters, phylogenetic reconstruction methods have greatly benefited from recent developments in molecular biology and sequencing technologies with a number of powerful methods having been developed specifically to infer phylogenies from macromolecular data. This chapter, while presenting an overview of basic concepts and methods used in phylogenetic reconstruction, is primarily intended as a simplified step-by-step guide to the construction of phylogenetic trees from nucleotide sequences using fairly up-to-date maximum likelihood methods implemented in freely available computer programs. While the analysis of chloroplast sequences from various Vanilla species is used as an illustrative example, the techniques covered here are relevant to the comparative analysis of homologous sequences datasets sampled from any group of organisms.


Subject(s)
Computational Biology/methods , Phylogeny , Animals , Base Sequence , Humans
5.
Arch Virol ; 158(8): 1829-32, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23525698

ABSTRACT

Two complete nucleotide sequences of an alphasatellite isolated from a cassava plant with mosaic disease symptoms in Madagascar are described and analyzed. While the helper begomovirus was identified as an isolate of East African cassava mosaic Kenya virus (EACMKV), its associated alphasatellite was most closely related (80 % nucleotide sequence identity) to cotton leaf curl Gezira alphasatellite. These satellite molecules have typical features of alphasatellites, with a single gene in the virion sense, an A-rich region and a stem-loop structure. According to the proposed species demarcation threshold of alphasatellites (83 % nucleotide identity), they are isolates of a new species for which we propose the name "Cassava mosaic alphasatellite".


Subject(s)
DNA, Satellite/genetics , Begomovirus/genetics , DNA, Satellite/isolation & purification , Madagascar , Manihot/virology , Molecular Sequence Data , Phylogeny , Plant Diseases/virology , Sequence Analysis, DNA , Sequence Homology
6.
BMC Evol Biol ; 12: 228, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23186303

ABSTRACT

BACKGROUND: Cassava (Manihot esculenta) is a major food source for over 200 million sub-Saharan Africans. Unfortunately, its cultivation is severely hampered by cassava mosaic disease (CMD). Caused by a complex of bipartite cassava mosaic geminiviruses (CMG) species (Family: Geminivirideae; Genus: Begomovirus) CMD has been widely described throughout Africa and it is apparent that CMG's are expanding their geographical distribution. Determining where and when CMG movements have occurred could help curtail its spread and reveal the ecological and anthropic factors associated with similar viral invasions. We applied Bayesian phylogeographic inference and recombination analyses to available and newly described CMG sequences to reconstruct a plausible history of CMG diversification and migration between Africa and South West Indian Ocean (SWIO) islands. RESULTS: The isolation and analysis of 114 DNA-A and 41 DNA-B sequences demonstrated the presence of three CMG species circulating in the Comoros and Seychelles archipelagos (East African cassava mosaic virus, EACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV). Phylogeographic analyses suggest that CMG's presence on these SWIO islands is probably the result of at least four independent introduction events from mainland Africa occurring between 1988 and 2009. Amongst the islands of the Comoros archipelago, two major migration pathways were inferred: One from Grande Comore to Mohéli and the second from Mayotte to Anjouan. While only two recombination events characteristic of SWIO islands isolates were identified, numerous re-assortments events were detected between EACMV and EACMKV, which seem to almost freely interchange their genome components. CONCLUSIONS: Rapid and extensive virus spread within the SWIO islands was demonstrated for three CMG complex species. Strong evolutionary or ecological interaction between CMG species may explain both their propensity to exchange components and the absence of recombination with non-CMG begomoviruses. Our results suggest an important role of anthropic factors in CMGs spread as the principal axes of viral migration correspond with major routes of human movement and commercial trade. Finer-scale temporal analyses of CMGs to precisely scale the relative contributions of human and insect transmission to their movement dynamics will require further extensive sampling in the SWIO region.


Subject(s)
Begomovirus/genetics , Evolution, Molecular , Genetic Variation , Phylogeny , Africa , Bayes Theorem , Begomovirus/classification , Cluster Analysis , Comoros , DNA, Viral/chemistry , DNA, Viral/genetics , Genome, Viral/genetics , Geography , Indian Ocean Islands , Manihot/virology , Molecular Sequence Data , Plant Diseases/virology , Sequence Analysis, DNA , Seychelles
7.
Arch Virol ; 157(10): 2027-30, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22777180

ABSTRACT

Cassava mosaic geminiviruses (CMGs) are implicated in cassava mosaic disease (CMD), the main constraint to cassava production in Africa. Here, we report the complete nucleotide sequences of the DNA-A and DNA-B of a newly characterized CMG found infecting cassava in Madagascar, for which we propose the tentative name cassava mosaic Madagascar virus. With the exception of two recombinant regions that resembled a CMG, we determined that the non-recombinant part of the DNA-A component is distantly related to the other CMGs. Whereas the DNA-B component possesses one recombinant region originating from an unidentified virus, the rest of the genome was seen to be closely related to members of the species East African cassava mosaic Zanzibar virus (EACMZV). Phylogenetic analysis based on complete genome sequences demonstrated that DNA-A and DNA-B components are outliers related to the clade of EACMV-like viruses and that DNA-A is related to the monopartite tomato leaf curl begomoviruses described in islands in the south-west Indian Ocean.


Subject(s)
Begomovirus/classification , Begomovirus/genetics , DNA Viruses/genetics , Manihot/virology , Plant Diseases/virology , DNA Viruses/classification , DNA Viruses/isolation & purification , DNA, Viral/genetics , Madagascar , Phylogeny , Plant Leaves/virology , Recombination, Genetic , Sequence Analysis, DNA , Species Specificity
8.
Virol J ; 9: 67, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22416906

ABSTRACT

BACKGROUND: Cassava mosaic disease (CMD) is a major constraint on cassava cultivation in Africa. The disease is endemic and is caused by seven distinct cassava mosaic geminiviruses (CMGs), some of them including several variants. FINDINGS: From cassava leaf samples presenting CMD symptoms collected in Burkina Faso, four DNA-A begomovirus components were cloned and sequenced, showing 99.9% nucleotide identity among them. These isolates are most closely related to African cassava mosaic virus (ACMV) but share less than 89% nucleotide identity (taxonomic threshold) with any previously described begomovirus. A DNA-B genomic component, sharing 93% nucleotide identity with DNA-B of ACMV, was also characterized. Since all genomic components have a typical genome organization of Old World bipartite begomoviruses, this new species was provisionally named African cassava mosaic Burkina Faso virus (ACMBFV). Recombination analysis of the new virus demonstrated an interspecies recombinant origin, with major parents related to West African isolates of ACMV, and minor parents related to Tomato leaf curl Cameroon virus and Cotton leaf curl Gezira virus. CONCLUSION: This is the first report of an ACMV-like recombinant begomovirus arisen by interspecific recombination between bipartite and monopartite African begomoviruses.


Subject(s)
Begomovirus/genetics , Gene Transfer, Horizontal , Begomovirus/classification , DNA, Viral , Evolution, Molecular , Gene Order , Manihot , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...