Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Med Chem ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748820

ABSTRACT

The lack of selective and safe in vivo IRE1α tool molecules has limited the evaluation of IRE1α as a viable target to treat multiple myeloma. Focus on improving the physicochemical properties of a literature compound by decreasing lipophilicity, molecular weight, and basicity allowed the discovery of a novel series with a favorable in vitro safety profile and good oral exposure. These efforts culminated in the identification of a potent and selective in vivo tool compound, G-5758, that was well tolerated following multiday oral administration of doses up to 500 mg/kg. G-5758 demonstrated comparable pharmacodynamic effects to induced IRE1 knockdown as measured by XBP1s levels in a multiple myeloma model (KMS-11).

2.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399394

ABSTRACT

Early stage chemical development presents numerous challenges, and achieving a functional balance is a major hurdle, with many early compounds not meeting the clinical requirements for advancement benchmarks due to issues like poor oral bioavailability. There is a need to develop strategies for achieving the desired systemic concentration for these compounds. This will enable further evaluation of the biological response upon a compound-target interaction, providing deeper insight into the postulated biological pathways. Our study elucidates alternative drug delivery paradigms by comparing formulation strategies across oral (PO), intraperitoneal (IP), subcutaneous (SC), and intravenous (IV) routes. While each modality boasts its own set of merits and constraints, it is the drug's formulation that crucially influences its pharmacokinetic (PK) trajectory and the maintenance of its therapeutic levels. Our examination of model compounds G7883 and G6893 highlighted their distinct physio-chemical attributes. By harnessing varied formulation methods, we sought to fine-tune their PK profiles. PK studies showcased G7883's extended half-life using an SC oil formulation, resulting in a 4.5-fold and 2.5-fold enhancement compared with the IP and PO routes, respectively. In contrast, with G6893, we achieved a prolonged systemic coverage time above the desired target concentration through a different approach using an IV infusion pump. These outcomes underscore the need for tailored formulation strategies, which are dictated by the compound's innate properties, to reach the optimal in vivo systemic concentrations. Prioritizing formulation and delivery optimization early on is pivotal for effective systemic uptake, thereby facilitating a deeper understanding of biological pathways and expediting the overall clinical drug development timeline.

3.
Cancer Res Commun ; 3(12): 2551-2559, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38019116

ABSTRACT

PURPOSE: We describe the clinical pharmacology characterization of giredestrant in a first-in-human study. EXPERIMENTAL DESIGN: This phase Ia/Ib dose-escalation/-expansion study (NCT03332797) evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of giredestrant in estrogen receptor-positive HER2-negative locally advanced/metastatic breast cancer. The single-agent dose-escalation stage evaluated giredestrant 10, 30, 90, or 250 mg once daily. The dose-expansion stage evaluated single-agent giredestrant at 30, 100, and 250 mg once daily. Dose-escalation and -expansion phases also evaluated giredestrant 100 mg combined with palbociclib 125 mg. RESULTS: Following single-dose oral administration, giredestrant was rapidly absorbed and generally showed a dose-proportional increase in exposure at doses ranging from 10 to 250 mg. At the 30 mg clinical dose, maximum plasma concentration was 266 ng/mL (50.1%) and area under the concentration-time curve from 0 to 24 hours at steady state was 4,320 ng·hour/mL (59.4%). Minimal giredestrant concentrations were detected in urine, indicating that renal excretion is unlikely to be a major elimination route for giredestrant. Mean concentration of 4beta-hydroxycholesterol showed no apparent increase over time at both the clinical dose (30 mg) and a supratherapeutic dose (90 mg), suggesting that giredestrant may have low CYP3A induction potential in humans. No clinically relevant drug-drug interaction was observed between giredestrant and palbociclib. Giredestrant exposure was not affected by food and was generally consistent between White and Asian patients. CONCLUSIONS: This study illustrates how the integration of clinical pharmacology considerations into early-phase clinical trials can inform the design of pivotal studies and accelerate oncology drug development. SIGNIFICANCE: This work illustrates how comprehensive clinical pharmacology characterization can be integrated into first-in-human studies in oncology. It also demonstrates the value of understanding clinical pharmacology attributes to inform eligibility, concomitant medications, and combination dosing and to directly influence late-stage trial design and accelerate development.


Subject(s)
Breast Neoplasms , Pharmacology, Clinical , Humans , Female , Breast Neoplasms/drug therapy , Drug Interactions
4.
Drug Metab Dispos ; 51(11): 1463-1473, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37580106

ABSTRACT

Prediction of hepatic clearance of drugs (via uptake or metabolism) from in vitro systems continues to be problematic, particularly when plasma protein binding is high. The following work explores simultaneous assessment of both clearance processes, focusing on a commercial hepatocyte-fibroblast co-culture system (HµREL) over a 24-hour period using six probe drugs (ranging in metabolic and transporter clearance and low-to-high plasma protein binding). A rat hepatocyte co-culture assay was established using drug depletion (measuring both medium and total concentrations) and cell uptake kinetic analysis, both in the presence and absence of plasma protein (1% bovine serum albumin). Secretion of endogenous albumin was monitored as a marker of viability, and this reached 0.004% in incubations (at a rate similar to in vivo synthesis). Binding to stromal cells was substantial and required appropriate correction factors. Drug concentration-time courses were analyzed both by conventional methods and a mechanistic cell model prior to in vivo extrapolation. Clearance assayed by drug depletion in conventional suspended rat hepatocytes provided a benchmark to evaluate co-culture value. Addition of albumin appeared to improve predictions for some compounds (where fraction unbound in the medium is less than 0.1); however, for high-binding drugs, albumin significantly limited quantification and thus predictions. Overall, these results highlight ongoing challenges concerning in vitro hepatocyte system complexity and limitations of practical expediency. Considering this, more reliable measurement of hepatically cleared compounds seems possible through judicious use of available hepatocyte systems, including co-culture systems, as described herein; this would include those compounds with low metabolic turnover but high active uptake clearance. SIGNIFICANCE STATEMENT: Co-culture systems offer a more advanced tool than standard hepatocytes, with the ability to be cultured for longer periods of time, yet their potential as an in vitro tool has not been extensively assessed. We evaluate the strengths and limitations of the HµREL system using six drugs representing various metabolic and transporter-mediated clearance pathways with various degrees of albumin binding. Studies in the presence/absence of albumin allow in vitro-in vivo extrapolation and a framework to maximize their utility.

5.
Biopharm Drug Dispos ; 44(4): 301-314, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37102506

ABSTRACT

GDC-9545 (giredestrant) is a highly potent, nonsteroidal, oral selective estrogen receptor antagonist and degrader that is being developed as a best-in-class drug candidate for early-stage and advanced drug-resistant breast cancer. GDC-9545 was designed to improve the poor absorption and metabolism of its predecessor GDC-0927, for which development was halted due to a high pill burden. This study aimed to develop physiologically-based pharmacokinetic/pharmacodynamic (PBPK-PD) models to characterize the relationships between oral exposure of GDC-9545 and GDC-0927 and tumor regression in HCI-013 tumor-bearing mice, and to translate these PK-PD relationships to a projected human efficacious dose by integrating clinical PK data. PBPK and Simeoni tumor growth inhibition (TGI) models were developed using the animal and human Simcyp V20 Simulator (Certara) and adequately described each compound's systemic drug concentrations and antitumor activity in the dose-ranging xenograft experiments in mice. The established PK-PD relationship was translated to a human efficacious dose by substituting mouse PK for human PK. PBPK input values for human clearance were predicted using allometry and in vitro in vivo extrapolation approaches and human volume of distribution was predicted from simple allometry or tissue composition equations. The integrated human PBPK-PD model was used to simulate TGI at clinically relevant doses. Translating the murine PBPK-PD relationship to a human efficacious dose projected a much lower efficacious dose for GDC-9545 than GDC-0927. Additional sensitivity analysis of key parameters in the PK-PD model demonstrated that the lower efficacious dose of GDC-9545 is a result of improvements in clearance and absorption. The presented PBPK-PD methodology can be applied to support lead optimization and clinical development of many drug candidates in discovery or early development programs.


Subject(s)
Neoplasms , Receptors, Estrogen , Humans , Mice , Animals , Models, Biological
6.
Expert Opin Investig Drugs ; 31(6): 515-529, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34694932

ABSTRACT

INTRODUCTION: The selective estrogen receptor degrader (SERD) and full receptor antagonist provides an important therapeutic option for hormone receptor (HR)-positive breast cancer. Endocrine therapies include tamoxifen, a selective estrogen receptor modulator (SERM), that exhibits receptor agonist and antagonist activity, and aromatase inhibitors that block estrogen biosynthesis but which demonstrate acquired resistance. Fulvestrant, the only currently approved SERD, is limited by poor drug-like properties. A key focus for improving disease management has been development of oral SERDs with optimized target occupancy and potency and superior clinical efficacy. AREAS COVERED: Using PubMed, clinicaltrials.gov, and congress websites, this review explored the preclinical development and clinical pharmacokinetics from early phase clinical studies (2015 or later) of novel oral SERDs, including giredestrant, amcenestrant, camizestrant, elacestrant, and rintodestrant. EXPERT OPINION: Numerous oral SERDs are in clinical development, aiming to form the core endocrine therapy for HR-positive breast cancer. Through property- and structure-based drug design of estrogen receptor-binding, antagonism, degradation, anti-proliferation, and pharmacokinetic properties, these SERDs have distinct profiles which impact clinical dosing, efficacy, and safety. Assuming preliminary safety and activity data are confirmed in phase 3 trials, these promising agents could further improve the management, outcomes, and quality of life in HR-positive breast cancer.


Subject(s)
Breast Neoplasms , Receptors, Estrogen , Breast Neoplasms/drug therapy , Estrogen Antagonists/pharmacology , Estrogen Antagonists/therapeutic use , Female , Fulvestrant/pharmacokinetics , Fulvestrant/therapeutic use , Humans , Quality of Life , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/adverse effects
7.
MethodsX ; 7: 101080, 2020.
Article in English | MEDLINE | ID: mdl-33088729

ABSTRACT

Drug-induced cholestasis (DIC) is a major cause of clinical failure of drug candidates. Numerous patients worldwide are affected when exposed to marketed drugs exhibiting a DIC signature. Prospective identification of DIC during early compound development remains challenging. Here we describe the optimized in vitro procedure for early assessment and prediction of an increased DIC risk. Our method is based on three principles:•Exposure of primary human hepatocyte cultures to test compounds in the absence and presence of a physiologically relevant mixture of endogenous bile salts.•Rapid and quantitative assessment of the influence of concomitant bile salt exposure on hepatocyte functionality and integrity after 24 h or 48 h of incubation.•Translation of the in vitro result, expressed as a DIC index (DICI) value, into an in vivo safety margin.Using our historical control data, a new (data driven) DICI cut-off value of 0.78 was established for discerning cholestatic and non-cholestatic compounds. Our DIC assay protocol was further improved by now relying on the principle of the no observable adverse effect level (NOAEL) for determining the highest test compound concentration corresponding to a DICI  ≥  0.78. Predicted safety margin values were subsequently calculated for compounds displaying hepatotoxic and/or cholestatic effects in patients, thus enabling evaluation of the performance of our DIC assay. Of note, this assay can be extended to explore the role of drug metabolites in precipitating DIC.

8.
Pharmacol Res Perspect ; 7(4): e00504, 2019 08.
Article in English | MEDLINE | ID: mdl-31384471

ABSTRACT

Selective analogs of the natural glycoside phloridzin are marketed drugs that reduce hyperglycemia in diabetes by inhibiting the active sodium glucose cotransporter SGLT2 in the kidneys. In addition, intestinal SGLT1 is now recognized as a target for glycemic control. To expand available type 2 diabetes remedies, we aimed to find novel SGLT1 inhibitors beyond the chemical space of glycosides. We screened a bioactive compound library for SGLT1 inhibitors and tested primary hits and additional structurally similar molecules on SGLT1 and SGLT2 (SGLT1/2). Novel SGLT1/2 inhibitors were discovered in separate chemical clusters of natural and synthetic compounds. These have IC50-values in the 10-100 µmol/L range. The most potent identified novel inhibitors from different chemical clusters are (SGLT1-IC50 Mean ± SD, SGLT2-IC50 Mean ± SD): (+)-pteryxin (12 ± 2 µmol/L, 9 ± 4 µmol/L), (+)-ε-viniferin (58 ± 18 µmol/L, 110 µmol/L), quinidine (62 µmol/L, 56 µmol/L), cloperastine (9 ± 3 µmol/L, 9 ± 7 µmol/L), bepridil (10 ± 5 µmol/L, 14 ± 12 µmol/L), trihexyphenidyl (12 ± 1 µmol/L, 20 ± 13 µmol/L) and bupivacaine (23 ± 14 µmol/L, 43 ± 29 µmol/L). The discovered natural inhibitors may be further investigated as new potential (prophylactic) agents for controlling dietary glucose uptake. The new diverse structure activity data can provide a starting point for the optimization of novel SGLT1/2 inhibitors and support the development of virtual SGLT1/2 inhibitor screening models.


Subject(s)
Biological Products/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Small Molecule Libraries/pharmacology , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/metabolism , Animals , Biological Products/chemistry , CHO Cells , Caco-2 Cells , Coumarins/chemistry , Coumarins/pharmacology , Cricetulus , Diabetes Mellitus, Type 2/metabolism , Humans , Inhibitory Concentration 50 , Phlorhizin/analogs & derivatives , Quinidine/chemistry , Quinidine/pharmacology , Small Molecule Libraries/chemistry , Sodium-Glucose Transporter 1/chemistry , Sodium-Glucose Transporter 2/chemistry
9.
Proc Natl Acad Sci U S A ; 116(33): 16420-16429, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31371506

ABSTRACT

Multiple myeloma (MM) arises from malignant immunoglobulin (Ig)-secreting plasma cells and remains an incurable, often lethal disease despite therapeutic advances. The unfolded-protein response sensor IRE1α supports protein secretion by deploying a kinase-endoribonuclease module to activate the transcription factor XBP1s. MM cells may co-opt the IRE1α-XBP1s pathway; however, the validity of IRE1α as a potential MM therapeutic target is controversial. Genetic disruption of IRE1α or XBP1s, or pharmacologic IRE1α kinase inhibition, attenuated subcutaneous or orthometastatic growth of MM tumors in mice and augmented efficacy of two established frontline antimyeloma agents, bortezomib and lenalidomide. Mechanistically, IRE1α perturbation inhibited expression of key components of the endoplasmic reticulum-associated degradation machinery, as well as secretion of Ig light chains and of cytokines and chemokines known to promote MM growth. Selective IRE1α kinase inhibition reduced viability of CD138+ plasma cells while sparing CD138- cells derived from bone marrows of newly diagnosed or posttreatment-relapsed MM patients, in both US- and European Union-based cohorts. Effective IRE1α inhibition preserved glucose-induced insulin secretion by pancreatic microislets and viability of primary hepatocytes in vitro, as well as normal tissue homeostasis in mice. These results establish a strong rationale for developing kinase-directed inhibitors of IRE1α for MM therapy.


Subject(s)
Endoribonucleases/genetics , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Aged , Animals , Bortezomib/pharmacology , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lenalidomide/pharmacology , Male , Mice , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Unfolded Protein Response/genetics , X-Box Binding Protein 1/genetics , Xenograft Model Antitumor Assays
10.
Cell ; 178(4): 949-963.e18, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31353221

ABSTRACT

Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor Antagonists/pharmacology , Fulvestrant/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/pharmacology , Drug Resistance, Neoplasm , Estrogen Receptor Antagonists/therapeutic use , Female , Fulvestrant/therapeutic use , HEK293 Cells , Heterografts , Humans , Indazoles/pharmacology , Ligands , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Polymorphism, Single Nucleotide , Proteolysis/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects
11.
Drug Metab Dispos ; 46(7): 989-1000, 2018 07.
Article in English | MEDLINE | ID: mdl-29720472

ABSTRACT

This work explores the utility of the cynomolgus monkey as a preclinical model to predict hepatic uptake clearance mediated by organic anion transporting polypeptide (OATP) transporters. Nine OATP substrates (rosuvastatin, pravastatin, repaglinide, fexofenadine, cerivastatin, telmisartan, pitavastatin, bosentan, and valsartan) were investigated in plated cynomolgus monkey and human hepatocytes. Total uptake clearance and passive diffusion were measured in vitro from initial rates in the absence and presence of the OATP inhibitor rifamycin SV , respectively. Total uptake clearance values in plated hepatocytes ranged over three orders of magnitude in both species, with a similar rank order and good agreement in the relative contribution of active transport to total uptake between cynomolgus monkey and human. In vivo hepatic clearance for these nine drugs was determined in cynomolgus monkey after intravenous dosing. Hepatic clearances showed a range similar to human parameters and good predictions from respective hepatocyte parameters (with 2.7- and 3.8-fold bias on average, respectively). The use of cross-species empirical scaling factors (determined from cynomolgus monkey data either as the data set average or individual drug values) improved prediction (less bias, better concordance) of human hepatic clearance from human hepatocyte data alone. In vitro intracellular binding in hepatocytes also correlated well between species. It is concluded that the minimal species differences observed for the current data set between cynomolgus monkey and human hepatocyte uptake, both in vitro and in vivo, support future use of this preclinical model to delineate drug hepatic uptake and enable prediction of human in vivo intrinsic hepatic clearance.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Metabolic Clearance Rate/physiology , Organic Anion Transporters/metabolism , Pharmaceutical Preparations/metabolism , Adult , Animals , Biological Transport/physiology , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Kinetics , Macaca fascicularis , Peptides/metabolism
12.
Pharm Res ; 35(4): 87, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29520503

ABSTRACT

PURPOSE: Volume of distribution at steady state (Vdss) is a fundamental pharmacokinetic (PK) parameter driven predominantly by passive processes and physicochemical properties of the compound. Human Vdss can be estimated using in silico mechanistic methods or empirically scaled from Vdss values obtained from preclinical species. In this study the accuracy and the complementarity of these two approaches are analyzed leveraging a large data set (over 150 marketed drugs). METHODS: For all the drugs analyzed in this study experimental in vitro measurements of LogP, plasma protein binding and pKa are used as input for the mechanistic in silico model to predict human Vdss. The software used for predicting human tissue partition coefficients and Vdss based on the method described by Rodgers and Rowland is made available as supporting information. RESULTS: This assessment indicates that overall the in silico mechanistic model presented by Rodgers and Rowland is comparably accurate or superior to empirical approaches based on the extrapolation of in vivo data from preclinical species. CONCLUSIONS: These results illustrate the great potential of mechanistic in silico models to accurately predict Vdss in humans. This in silico method does not rely on in vivo data and is, consequently, significantly time and resource sparing. The success of this in silico model further suggests that reasonable predictability of Vdss in preclinical species could be obtained by a similar process.


Subject(s)
Computer Simulation , Drug Evaluation, Preclinical , Models, Biological , Pharmaceutical Research/methods , Absorption, Physiological , Datasets as Topic , Metabolic Clearance Rate , Software , Tissue Distribution
13.
AAPS J ; 20(2): 33, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29468289

ABSTRACT

Freshly-isolated rat hepatocytes are commonly used as tools for hepatic drug disposition. From an ethical point of view, it is important to maximize the use of isolated hepatocytes by cryopreservation. The present study compared overall hepatocyte functionality as well as activity of the organic anion transporting polypeptide (Oatp), multidrug resistance-associated protein 2 (Mrp2), and UDP-glucuronosyltransferase 1 (Ugt1), in in vitro models established with cryopreserved and freshly-isolated hepatocytes. A similar culture time-dependent decline in cellular functionality, as assessed by urea production, was observed in sandwich-cultured hepatocytes (SCH) obtained from freshly-isolated and cryopreserved cells. Concentration-dependent uptake kinetics of the Oatp substrate sodium fluorescein in suspended hepatocytes (SH) or SCH were not significantly affected by cryopreservation. Mrp2-mediated biliary excretion of 5 (and 6)-carboxy-2',7'-dichlorofluorescein by SCH was assessed with semi-quantitative fluorescence imaging: biliary excretion index values increased between day 3 and day 4, but did not differ significantly between cryopreserved and freshly-isolated hepatocytes. Finally, telmisartan disposition was evaluated in SCH to simultaneously explore Oatp, Ugt1, and Mrp2 activity. In order to distinguish between the susceptibilities of the individual disposition pathways to cryopreservation, a mechanistic cellular disposition model was developed. Basolateral and canalicular efflux as well as glucuronidation of telmisartan were affected by cryopreservation. In contrast, the disposition parameters of telmisartan-glucuronide were not impacted by cryopreservation. Overall, the relative contribution of the rate-determining processes (uptake, metabolism, efflux) remained unaltered between cryopreserved and freshly-isolated hepatocytes, indicating that cryopreserved hepatocytes are a suitable alternative for freshly-isolated hepatocytes when studying these cellular disposition pathways.


Subject(s)
Cell Culture Techniques/methods , Cryopreservation , Hepatocytes/metabolism , ATP-Binding Cassette Transporters/metabolism , Animals , Cells, Cultured , Glucuronides/chemistry , Glucuronosyltransferase/metabolism , Liver/cytology , Male , Organic Anion Transporters/metabolism , Rats , Rats, Wistar , Telmisartan/chemistry , Telmisartan/metabolism
14.
Drug Metab Dispos ; 46(4): 405-414, 2018 04.
Article in English | MEDLINE | ID: mdl-29439129

ABSTRACT

Hepatocyte drug depletion-time assays are well established for determination of metabolic clearance in vitro. The present study focuses on the refinement and evaluation of a "media loss" assay, an adaptation of the conventional depletion assay involving centrifugation of hepatocytes prior to sampling, allowing estimation of uptake in addition to metabolism. Using experimental procedures consistent with a high throughput, a selection of 12 compounds with a range of uptake and metabolism characteristics (atorvastatin, cerivastatin, clarithromycin, erythromycin, indinavir, pitavastatin, repaglinide, rosuvastatin, saquinavir, and valsartan, with two control compounds-midazolam and tolbutamide) were investigated in the presence and absence of the cytochrome P450 inhibitor 1-aminobenzotriazole and organic anion transporter protein inhibitor rifamycin SV in rat hepatocytes. Data were generated simultaneously for a given drug, and provided, through the use of a mechanistic cell model, clearance terms characterizing metabolism, active and passive uptake, together with intracellular binding and partitioning parameters. Results were largely consistent with the particular drug characteristics, with active uptake, passive diffusion, and metabolic clearances ranging between 0.4 and 777, 3 and 383, and 2 and 236 µl/min per milligram protein, respectively. The same experiments provided total and unbound drug cellular partition coefficients ranging between 3.8 and 254 and 2.3 and 8.3, respectively, and intracellular unbound fractions between 0.014 and 0.263. Following in vitro-in vivo extrapolation, the lowest prediction bias was noted using uptake clearance, compared with metabolic clearance or apparent clearance from the media loss assay alone. This approach allows rapid and comprehensive characterization of hepatocyte drug disposition valuable for prediction of hepatic processes in vivo.


Subject(s)
Liver/metabolism , Pharmaceutical Preparations/metabolism , Animals , Biological Transport/physiology , Hepatocytes/metabolism , Inactivation, Metabolic/physiology , Male , Metabolic Clearance Rate/physiology , Rats , Rats, Sprague-Dawley
15.
J Pharm Sci ; 105(2): 846-853, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26202434

ABSTRACT

This study aimed to determine the rate-limiting step in the overall hepatic clearance of the marketed human immunodeficiency virus (HIV) protease inhibitors (PI) in rats by predicting the experimentally determined hepatic in vivo clearance of these drugs based on in vitro clearance values for uptake and/or metabolism. In vitro uptake and metabolic clearance values were determined in suspended rat hepatocytes and rat liver microsomes, respectively. In vivo hepatic clearance was determined after intravenous bolus administration in rats. Excellent in vitro-in vivo correlation (IVIVC; R(2) = 0.80) was observed when metabolic intrinsic Cl values were used, which were determined in vitro at a single concentration corresponding to the blood concentration observed in rats in vivo at the mean residence time. On the contrary, poor IVIVC was observed when in vitro metabolic Cl values based on full Michaelis-Menten profiles were used. In addition, the use of uptake Cl values or a combination of both uptake and metabolic clearance data led to poor predictions of in vivo clearance. Although our findings indicate a key role for metabolism in the hepatic clearance of several HIV PI in rats, subsequent simulations revealed that inhibition of hepatic uptake can lead to altered hepatic clearance for several of these drugs.


Subject(s)
HIV Protease Inhibitors/metabolism , Hepatocytes/metabolism , Metabolic Clearance Rate/physiology , Animals , Dose-Response Relationship, Drug , Forecasting , HIV Protease Inhibitors/pharmacology , Hepatocytes/drug effects , Humans , Male , Metabolic Clearance Rate/drug effects , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rats , Rats, Wistar
16.
J Pharm Sci ; 105(2): 854-863, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26213315

ABSTRACT

The aim of this work was to explore the contribution of the organic anion transporting polypeptide-1B (OATP1B) drug transporters in the hepatic clearance (Cl) of all marketed HIV protease inhibitors (PI) in humans. HIV PI uptake rates in OATP1B1/1B3-transfected Chinese hamster ovary cells were converted to uptake Cl values in human hepatocytes via a relative activity factor, which was determined by comparing uptake of known substrates between OATP1B1/3-transfected cells and human hepatocytes. Metabolic Cl values were determined in human liver microsomes. In vivo hepatic Cl values were calculated either by combining drug uptake and metabolism or based on one of these individual Cl processes and compared with published in vivo hepatic Cl values. Excellent in vitro-in vivo correlation (R(2) = 0.85) was observed when only uptake Cl values were used, but not when only metabolic Cl was used (R(2) = 0.40). The correlation did not improve when both processes were taken into account (R(2) = 0.85). PBPK models confirmed the remarkable sensitivity of predicted exposure to hepatic drug uptake, indicating a key role for OATP1B1/3 in hepatic disposition of several HIV PI in man. This may contribute to the interindividual variability in systemic and hepatic exposure to these drugs in the clinic.


Subject(s)
HIV Protease Inhibitors/metabolism , Hepatocytes/metabolism , Metabolic Clearance Rate/physiology , Microsomes, Liver/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Forecasting , HIV Protease Inhibitors/pharmacology , Hepatocytes/drug effects , Humans , Metabolic Clearance Rate/drug effects , Microsomes, Liver/drug effects
17.
Drug Metab Dispos ; 44(3): 389-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26712820

ABSTRACT

The aim of this study was to explore the mechanisms governing the intra- to extracellular unbound concentration ratio (Kpu,u) for the HIV protease inhibitor atazanavir (ATV) in rat hepatocytes. We had previously proposed a new method to determine Kpu,u by using the unbound Km values from metabolism studies with suspended rat hepatocytes and rat liver microsomes. Following that method, we determined that the value of ATV Kpu,u was 0.32, indicating that ATV hepatocellular clearance is uptake rate-limited. This hypothesis was supported by the linear correlation between Kpu,u and active uptake clearance (P = 0.04; R(2)=0.82) in the presence of increasing concentrations of the uptake transport inhibitor losartan. Moreover, in contrast to an expected increase of Kpu,u upon inhibition of ATV metabolism, a decrease of Kpu,u was observed, suggesting an increased impact of sinusoidal efflux. In summary, involvement of active uptake transport does not guarantee high intracellular accumulation; however, it has a key role in regulating intracellular drug concentrations and drug metabolism. These findings will help improve future in vitro-to-in vivo extrapolations and likewise physiologically based pharmacokinetic models.


Subject(s)
Atazanavir Sulfate/metabolism , HIV Protease Inhibitors/metabolism , Hepatocytes/metabolism , Animals , Atazanavir Sulfate/pharmacology , Biological Transport, Active/drug effects , HIV Protease Inhibitors/pharmacology , Hepatocytes/drug effects , Losartan/pharmacology , Male , Microsomes, Liver/metabolism , Rats , Rats, Wistar
18.
J Pharm Sci ; 103(6): 1872-81, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24652646

ABSTRACT

This study aimed to characterize the in vitro hepatic transport mechanisms in primary rat and human hepatocytes of the fluorescent bile acid derivative N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5ß-cholestan-26-oyl)-2'-aminoethanesulfonate (tauro-nor-THCA-24-DBD), previously synthesized to study the activity of the bile salt export pump (BSEP). The fluorescent bile acid derivative exhibited saturable uptake kinetics in suspended rat hepatocytes. Hepatic uptake was inhibited in the presence of substrates/inhibitors of the organic anion transporting polypeptide (Oatp) family and Na(+) -taurocholate cotransporting peptide (Ntcp). Concentration-dependent uptake of the fluorescent bile acid was also saturable in Chinese hamster ovary cells transfected with rNtcp, hNTCP, OATP1B1, or OATP1B3. The fluorescent bile acid derivative was actively excreted in the bile canaliculi of sandwich-cultured rat and human hepatocytes (SCRH and SCHH), with a biliary excretion index (BEI) of 26% and 32%, respectively. In SCRH, cyclosporin A significantly decreased the BEI to 5%. Quantification by real-time confocal imaging further confirmed canalicular transport of the fluorescent bile acid derivative (BEI = 75%). We conclude that tauro-nor-THCA-24-DBD is a useful probe to study interference of drugs with NTCP/Ntcp- and BSEP/Bsep-mediated transport in fluorescence-based in vitro assays.


Subject(s)
Bile Acids and Salts/chemistry , Fluorescent Dyes/chemistry , Liver/metabolism , Microscopy, Confocal/methods , Taurocholic Acid/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Male , Rats , Rats, Wistar , Taurocholic Acid/pharmacokinetics
19.
Mol Pharmacol ; 83(6): 1257-67, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23571415

ABSTRACT

Several recent studies show that inhibition of the hepatic transport proteins organic anion-transporting polypeptide 1B1 (OATP1B1) and 1B3 (OATP1B3) can result in clinically relevant drug-drug interactions (DDI). To avoid late-stage development drug failures due to OATP1B-mediated DDI, predictive in vitro and in silico methods should be implemented at an early stage of the drug candidate evaluation process. In the present study, we first developed a high-throughput in vitro transporter inhibition assay for the OATP1B subfamily. A total of 2000 compounds were tested as potential modulators of the uptake of the OATP1B substrate sodium fluorescein, in OATP1B1- or 1B3-transfected Chinese hamster ovary cells. At an equimolar substrate-inhibitor concentration of 10 µM, 212 and 139 molecules were identified as OATP1B1 and OATP1B3 inhibitors, respectively (minimum 50% inhibition). For 69 compounds, previously not identified as OATP1B inhibitors, concentration-dependent inhibition was also determined, yielding Ki values ranging from 0.06 to 6.5 µM. Based on these in vitro data, we subsequently developed a proteochemometrics-based in silico model, which predicted OATP1B inhibitors in the test group (20% of the dataset) with high specificity (86%) and sensitivity (78%). Moreover, several physicochemical compound properties and substructures related to OATP1B1/1B3 inhibition or inactivity were identified. Finally, model performance was prospectively verified with a set of 54 compounds not included in the original dataset. This validation indicated that 80 and 74% of the compounds were correctly classified for OATP1B1 and OATP1B3 inhibition, respectively.


Subject(s)
Models, Molecular , Organic Anion Transporters/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Algorithms , Animals , CHO Cells , Cricetinae , Cricetulus , High-Throughput Screening Assays , Organic Anion Transporters/genetics , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Transfection
20.
Expert Opin Drug Metab Toxicol ; 9(5): 589-616, 2013 May.
Article in English | MEDLINE | ID: mdl-23452081

ABSTRACT

INTRODUCTION: The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED: In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION: When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.


Subject(s)
Cell Culture Techniques/methods , Hepatocytes/drug effects , Liver/drug effects , Animals , Biliary Tract/metabolism , Biological Transport , Cell Differentiation , Cells, Cultured , Chemical and Drug Induced Liver Injury/physiopathology , Cryopreservation , Culture Media , Drug Evaluation, Preclinical , Drug Interactions , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Inactivation, Metabolic , Liver/metabolism , Liver/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...