Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Mol Biol ; 32(5): 510-527, 2023 10.
Article in English | MEDLINE | ID: mdl-37204105

ABSTRACT

We provide a culturomics analysis of the cultivable bacterial communities of the crop, midgut and hindgut compartments, as well as the ovaries, of the invasive insect Vespa velutina, along with a cultivation-independent analysis of samples of the same nest through 16S rRNA amplicon sequencing. The Vespa velutina bacterial symbiont community was dominated by the genera Convivina, Fructobacillus, Lactiplantibacillus, Lactococcus, Sphingomonas and Spiroplasma. Lactococcus lactis and Lactiplantibacillus plantarum represented generalist core lactic acid bacteria (LAB) symbionts, while Convivina species and Fructobacillus fructosus represented highly specialised core LAB symbionts with strongly reduced genome sizes. Sphingomonas and Spiroplasma were the only non-LAB core symbionts but were not isolated. Convivina bacteria were particularly enriched in the hornet crop and included Convivina intestini, a species adapted towards amino acid metabolism, and Convivina praedatoris sp. nov. which was adapted towards carbohydrate metabolism.


Subject(s)
Wasps , Animals , Wasps/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics
2.
Foods ; 12(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38231655

ABSTRACT

Consumers are more than ever in search of novel and exciting beer choices, and brewers are, therefore, continuously experimenting to adapt their product portfolio. One interesting way to naturally incorporate novel flavors and tastes is by using alternative adjuncts, but this is not always an easy and straightforward process. In this study, a 40% unmalted alternative adjunct (einkorn, emmer, spelt, khorasan, quinoa, amaranth, buckwheat, sorghum, teff, and tritordeum) or reference (barley malt, unmalted barley, and unmalted wheat) was added to 60% barley malt, after which three different laboratory mashing processes (Congress mash, Congress mash with pre-gelatinization of the adjunct, and Evans mash) were performed, and their behavior during mashing and the resulting wort characteristics were investigated in detail. Overall, the extraction process of all 10 unmalted alternative adjuncts was not complete for all three laboratory mashing processes, whereby Congress mashing resulted in the highest extract and fastest filtration, whereas Evans mashing resulted in the lowest extract and slowest filtration. Pre-gelatinization of the unmalted was generally only beneficial for adjuncts with high onset starch gelatinization temperatures. This process also inactivated endogenous enzymes in the unmalted adjuncts, which had an adverse effect on the mashing process.

3.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Article in English | MEDLINE | ID: mdl-36748597

ABSTRACT

Strain C17-3T was isolated from blueberry fruits collected from a farmland located in Damyang-gun, Jeollanam-do, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences allocated strain C17-3T to the genus Acetobacter, where it occupied a rather isolated line of descent with Acetobacter ghanensis 430AT and Acetobacter lambici LMG 27439T as the nearest neighbours (98.9 % sequence similarity to both species). The highest average nucleotide identity and digital DNA-DNA hybridization values were 76.3 % and 21.7 % with Acetobacter garciniae TBRC 12339T; both values were well below the cutoff values for species delineation. Cells are strictly aerobic, Gram-stain-negative rods, catalase-positive and oxidase-negative. The DNA G+C content calculated from the genome sequence was 59.2 %. Major fatty acids were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C19 : 0cyclo ω8c. The major isoprenoid quinone was ubiquinone 9. On the basis of the results of phylogenetic analyses, phenotypic features and genomic comparisons, it is proposed that strain C17-3T represents a novel species of the genus Acetobacter and the name Acetobacter vaccinii sp. nov. is proposed. The type strain is C17-3T (= KACC 21233T = LMG 31758T).


Subject(s)
Acetobacter , Blueberry Plants , Acetic Acid , Acetobacter/classification , Acetobacter/isolation & purification , Bacterial Typing Techniques , Base Composition , Blueberry Plants/microbiology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fruit/microbiology , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Republic of Korea
4.
FEMS Yeast Res ; 17(1)2017 01.
Article in English | MEDLINE | ID: mdl-27956491

ABSTRACT

Brettanomyces (Dekkera) bruxellensis is an ascomycetous yeast of major importance in the food, beverage and biofuel industry. It has been isolated from various man-made ecological niches that are typically characterized by harsh environmental conditions such as wine, beer, soft drink, etc. Recent comparative genomics studies revealed an immense intraspecific diversity, but it is still unclear whether this genetic diversity also leads to systematic differences in fermentation performance and (off-)flavor production, and to what extent strains have evolved to match their ecological niche. Here, we present an evaluation of the fermentation properties of eight genetically diverse B. bruxellensis strains originating from beer, wine and soft drinks. We show that sugar consumption and aroma production during fermentation are determined by both the yeast strain and composition of the medium. Furthermore, our results indicate a strong niche adaptation of B. bruxellensis, most clearly for wine strains. For example, only strains originally isolated from wine were able to thrive well and produce the typical Brettanomyces-related phenolic off-flavors 4-ethylguaiacol and 4-ethylphenol when inoculated in red wine. Sulfite tolerance was found as a key factor explaining the observed differences in fermentation performance and off-flavor production. Sequence analysis of genes related to phenolic off-flavor production, however, revealed only marginal differences between the isolates tested, especially at the amino acid level. Altogether, our study provides novel insights in the Brettanomyces metabolism of flavor production, and is highly relevant for both the wine and beer industry.


Subject(s)
Brettanomyces/metabolism , Carbohydrate Metabolism , Fermentation , Food Microbiology , Volatile Organic Compounds/metabolism , Adaptation, Biological , Brettanomyces/classification , Brettanomyces/genetics , Brettanomyces/isolation & purification , Culture Media/chemistry , Genetic Variation
5.
J Agric Food Chem ; 60(46): 11449-72, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23148603

ABSTRACT

The chemistry of beer flavor instability remains shrouded in mystery, despite decades of extensive research. It is, however, certain that aldehydes play a crucial role because their concentration increase coincides with the appearance and intensity of "aged flavors". Several pathways give rise to a variety of key flavor-active aldehydes during beer production, but it remains unclear as to what extent they develop after bottling. There are indications that aldehydes, formed during beer production, are bound to other compounds, obscuring them from instrumental and sensory detection. Because freshly bottled beer is not in chemical equilibrium, these bound aldehydes might be released over time, causing stale flavor. This review discusses beer aging and the role of aldehydes, focusing on both sensory and chemical aspects. Several aldehyde formation pathways are taken into account, as well as aldehyde binding in and release from imine and bisulfite adducts.


Subject(s)
Aldehydes/chemistry , Beer/analysis , Flavoring Agents/chemistry , Humans , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...