Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 9: 1626, 2018.
Article in English | MEDLINE | ID: mdl-30524297

ABSTRACT

In striking analogy with Saccharomyces cerevisiae, etiolated pea stem mitochondria did not show appreciable Ca2+ uptake. Only treatment with the ionophore ETH129 (which allows electrophoretic Ca2+ equilibration) caused Ca2+ uptake followed by increased inner membrane permeability, membrane depolarization and Ca2+ release. Like the permeability transition (PT) of mammals, yeast and Drosophila, the PT of pea stem mitochondria was stimulated by diamide and phenylarsine oxide and inhibited by Mg-ADP and Mg-ATP, suggesting a common underlying mechanism; yet, the plant PT also displayed distinctive features: (i) as in mammals it was desensitized by cyclosporin A, which does not affect the PT of yeast and Drosophila; (ii) similarly to S. cerevisiae and Drosophila it was inhibited by Pi, which stimulates the PT of mammals; (iii) like in mammals and Drosophila it was sensitized by benzodiazepine 423, which is ineffective in S. cerevisiae; (iv) like what observed in Drosophila it did not mediate swelling and cytochrome c release, which is instead seen in mammals and S. cerevisiae. We find that cyclophilin D, the mitochondrial receptor for cyclosporin A, is present in pea stem mitochondria. These results indicate that the plant PT has unique features and suggest that, as in Drosophila, it may provide pea stem mitochondria with a Ca2+ release channel.

2.
Elife ; 62017 07 18.
Article in English | MEDLINE | ID: mdl-28716182

ABSTRACT

Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant.


Subject(s)
Adenosine Triphosphate/analysis , Arabidopsis/physiology , Energy Metabolism , Plant Cells/physiology , Biosensing Techniques , Genes, Reporter , Homeostasis , Hypoxia , Luminescent Proteins/analysis , Seedlings/physiology , Staining and Labeling
3.
Front Plant Sci ; 6: 1120, 2015.
Article in English | MEDLINE | ID: mdl-26697057

ABSTRACT

The synthesis of ATP in mitochondria is dependent on a low permeability of the inner membrane. Nevertheless, mitochondria can undergo an increased permeability to solutes, named permeability transition (PT) that is mediated by a permeability transition pore (PTP). PTP opening requires matrix Ca(2+) and leads to mitochondrial swelling and release of intramembrane space proteins (e.g., cytochrome c). This feature has been initially observed in mammalian mitochondria and tentatively attributed to some components present either in the outer or inner membrane. Recent works on mammalian mitochondria point to mitochondrial ATP synthase dimers as physical basis for PT, a finding that has been substantiated in yeast and Drosophila mitochondria. In plant mitochondria, swelling and release of proteins have been linked to programmed cell death, but in isolated mitochondria PT has been observed in only a few cases and in plant cell cultures only indirect evidence is available. The possibility that mitochondrial ATP synthase dimers could function as PTP also in plants is discussed here on the basis of the current evidence. Finally, a hypothetical explanation for the origin of PTP is provided in the framework of molecular exaptation.

4.
Funct Plant Biol ; 42(3): 264-273, 2015 Mar.
Article in English | MEDLINE | ID: mdl-32480672

ABSTRACT

Spartina patens (Ait.) Muhl. is a grass native to the Atlantic coastal area of North America currently invading salt marsh ecosystems in several regions of Europe. We investigated leaf water relations and hydraulics, gas exchange, nitrogen and starch content in two populations of S. patens growing under contrasting salinity levels in a salt marsh and in a dune system in order to assess its functional plasticity as a factor contributing to its invasive potential. The analysis of leaf water relations revealed a suite of mechanisms adopted by S. patens to overcome salt and drought stress while maintaining relatively invariant leaf morphological traits and plant biomass. In particular, salt marsh plants experiencing severe water stress underwent greater osmoregulation and leaf hydraulic adjustment than dune plants. We also present the first experimental evidence for salt-mediated regulation of xylem hydraulic efficiency in a halophytic grass and suggest that it is an important functional trait allowing plants growing in saline habitats to cope with a restricted water supply. The functional plasticity of leaf water relations and xylem hydraulics emerges as a key trait underlying the competitive ability and invasive potential of S. patens.

SELECTION OF CITATIONS
SEARCH DETAIL
...