Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Arch Pharm (Weinheim) ; : e2400086, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807029

ABSTRACT

A series of benzoxazole-based amides and sulfonamides were synthesized and evaluated for their human peroxisome proliferator-activated receptor (PPAR)α and PPARγ activity. All tested compounds showed a dual antagonist profile on both PPAR subtypes; based on transactivation results, seven compounds were selected to test their in vitro antiproliferative activity in a panel of eight cancer cell lines with different expression rates of PPARα and PPARγ. 3f was identified as the most cytotoxic compound, with higher potency in the colorectal cancer cell lines HT-29 and HCT116. Compound 3f induced a concentration-dependent activation of caspases and cell-cycle arrest in both colorectal cancer models. Docking experiments were also performed to shed light on the putative binding mode of this novel class of dual PPARα/γ antagonists.

2.
Expert Opin Ther Pat ; : 1-17, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38683024

ABSTRACT

INTRODUCTION: Pseudomonas aeruginosa (PA) is a Gram-negative bacterium that can cause a wide range of severe infections in immunocompromised patients. The most difficult challenge is due to its ability to rapidly develop multi drug-resistance. New strategies are urgently required to improve the outcome of patients with PA infections. The present patent review highlights the new molecules acting on different targets involved in the antibiotic resistance. AREA COVERED: This review offers an insight into new potential PA treatment disclosed in patent literature. From a broad search of documents claiming new PA inhibitors, we selected and summarized molecules that showed in vitro and in vivo activity against PA spp. in the period 2020 and 2023. We collected the search results basing on the targets explored. EXPERT OPINION: This review examined the main patented compounds published in the last three years, with regard to the structural novelty and the identification of innovative targets. The main areas of antibiotic resistance have been explored. The compounds are structurally unrelated to earlier antibiotics, characterized by a medium-high molecular weight and the presence of heterocycle rings. Peptides and antibodies have also been reported as potential alternatives to chemical treatment, hereby expanding the therapeutic possibilities in this field.

3.
Expert Opin Ther Pat ; 34(1-2): 83-98, 2024.
Article in English | MEDLINE | ID: mdl-38501260

ABSTRACT

INTRODUCTION: The search for novel compounds targeting Peroxisome Proliferator-Activated Receptors (PPARs) is currently ongoing, starting from the previous successfully identification of selective, dual or pan agonists. In last years, researchers' efforts are mainly paid to the discovery of PPARγ and δ modulators, both agonists and antagonists, selective or with a dual-multitarget profile. Some of these compounds are currently under clinical trials for the treatment of primary biliary cirrhosis, nonalcoholic fatty liver disease, hepatic, and renal diseases. AREAS COVERED: A critical analysis of patents deposited in the range 2020-2023 was carried out. The novel compounds discovered were classified as selective PPAR modulators, dual and multitarget PPAR agonists. The use of PPAR ligands in combination with other drugs was also discussed, together with novel therapeutic indications proposed for them. EXPERT OPINION: From the analysis of the patent literature, the current emerging landscape sees the necessity to obtain PPAR multitarget compounds, with a balanced potency on three subtypes and the ability to modulate different targets. This multitarget action holds great promise as a novel approach to complex disorders, as metabolic, inflammatory diseases, and cancer. The utility of PPAR ligands in the immunotherapy field also opens an innovative scenario, that could deserve further applications.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Patents as Topic , PPAR gamma/agonists , Hypoglycemic Agents , Metabolic Diseases/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Ligands
4.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003697

ABSTRACT

Nature has always been a precious source of bioactive molecules which are used for the treatment of various diseases [...].


Subject(s)
Antineoplastic Agents , Biological Products , Neoplasms , Humans , Neoplasms/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
5.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36986448

ABSTRACT

Activation of peroxisome proliferator-activated receptors (PPARs) not only regulates multiple metabolic pathways, but mediates various biological effects related to inflammation and oxidative stress. We investigated the effects of four new PPAR ligands containing a fibrate scaffold-the PPAR agonists (1a (αEC50 1.0 µM) and 1b (γEC50 0.012 µM)) and antagonists (2a (αIC50 6.5 µM) and 2b (αIC50 0.98 µM, with a weak antagonist activity on γ isoform))-on proinflammatory and oxidative stress biomarkers. The PPAR ligands 1a-b and 2a-b (0.1-10 µM) were tested on isolated liver specimens treated with lipopolysaccharide (LPS), and the levels of lactate dehydrogenase (LDH), prostaglandin (PG) E2, and 8-iso-PGF2α were measured. The effects of these compounds on the gene expression of the adipose tissue markers of browning, PPARα, and PPARγ, in white adipocytes, were evaluated as well. We found a significant reduction in LPS-induced LDH, PGE2, and 8-iso-PGF2α levels after 1a treatment. On the other hand, 1b decreased LPS-induced LDH activity. Compared to the control, 1a stimulated uncoupling protein 1 (UCP1), PR-(PRD1-BF1-RIZ1 homologous) domain containing 16 (PRDM16), deiodinase type II (DIO2), and PPARα and PPARγ gene expression, in 3T3-L1 cells. Similarly, 1b increased UCP1, DIO2, and PPARγ gene expression. 2a-b caused a reduction in the gene expression of UCP1, PRDM16, and DIO2 when tested at 10 µM. In addition, 2a-b significantly decreased PPARα gene expression. A significant reduction in PPARγ gene expression was also found after 2b treatment. The novel PPARα agonist 1a might be a promising lead compound and represents a valuable pharmacological tool for further assessment. The PPARγ agonist 1b could play a minor role in the regulation of inflammatory pathways.

6.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768301

ABSTRACT

Pancreatic cancer (PC) is one of the deadliest malignancies, with an increasing incidence and limited response to current therapeutic options. Therefore, more effective and low-toxic agents are needed to improve PC patients' outcomes. Resveratrol (RSV) is a natural polyphenol with multiple biological properties, including anticancer effects. In this study, we explored the antiproliferative activities of newly synthetized RSV analogues in a panel of PC cell lines and evaluated the physicochemical properties of the most active compound. This derivative exhibited marked antiproliferative effects in PC cells through mechanisms involving DNA damage, apoptosis induction, and interference in cell cycle progression, as assessed using flow cytometry and immunoblot analysis of cell cycle proteins, PARP cleavage, and H2AX phosphorylation. Notably, the compound induced a consistent reduction in the PC cell subpopulation with a CD133+EpCAM+ stem-like phenotype, paralleled by dramatic effects on cell clonogenicity. Moreover, the RSV derivative had negligible toxicity against normal HFF-1 cells and, thus, good selectivity index values toward PC cell lines. Remarkably, its higher lipophilicity and stability in human plasma, as compared to RSV, might ensure a better permeation along the gastrointestinal tract. Our results provide insights into the mechanisms of action contributing to the antiproliferative activity of a synthetic RSV analogue, supporting its potential value in the search for effective and safe agents in PC treatment.


Subject(s)
Neoplastic Stem Cells , Pancreatic Neoplasms , Polyphenols , Resveratrol , Humans , Apoptosis/drug effects , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Pancreatic Neoplasms/pathology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Resveratrol/analogs & derivatives , Resveratrol/pharmacology , Resveratrol/therapeutic use , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/physiology , Pancreatic Neoplasms
7.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834684

ABSTRACT

Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.


Subject(s)
Endothelial Cells , Fibroblasts , Resveratrol/pharmacology , Cells, Cultured , Fibroblasts/metabolism , Wound Healing , RNA, Messenger/metabolism
8.
Molecules ; 27(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36431918

ABSTRACT

Neurodegenerative diseases (NDs) are described as multifactorial and progressive syndromes with compromised cognitive and behavioral functions. The multi-target-directed ligand (MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV) analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1−9 were tested as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM) with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM). It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for RSV). To evaluate the plausible binding mode of 1−9 within the two enzymes, molecular docking and dynamics studies were performed, revealing specific and significant interactions in the active sites of both targets. The new compounds are of pharmacological interest in view of their considerably reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO and CA inhibitors with therapeutic potential in neuroprotection.


Subject(s)
Carbonic Anhydrases , Neurodegenerative Diseases , Humans , Monoamine Oxidase Inhibitors/chemistry , Resveratrol/pharmacology , Neurodegenerative Diseases/drug therapy , Molecular Docking Simulation , Structure-Activity Relationship , Monoamine Oxidase/metabolism , Carbonic Anhydrases/metabolism
9.
Antibiotics (Basel) ; 11(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36290033

ABSTRACT

Fungal pathogens, including Candida spp., Aspergillus spp. and dermatophytes, cause more than a billion human infections every year. A large library of imidazole- and triazole-based compounds were in vitro screened for their antifungal activity against C. albicans, C. glabrata, C. krusei, A. fumigatus and dermatophytes, such as Microsporum gypseum, Trichophyton rubrum and Trichophyton mentagrophytes. The imidazole carbamate 12 emerged as the most active compound, showing a valuable antifungal activity against C. glabrata (MIC 1−16 µg/mL) and C. krusei (MIC 4−24 µg/mL). No activity against A. fumigatus or the dermatophytes was observed among all the tested compounds. The compound 12 inhibited the formation of C. albicans, C. glabrata and C. krusei biofilms and reduced the mature Candida biofilm. In the Galleria mellonella larvae, 12 showed a significant reduction in the Candida infection, together with a lack of toxicity at the concentration used to activate its antifungal activity. Moreover, the in silico prediction of the putative targets revealed that the concurrent presence of the imidazole core, the carbamate and the p-chlorophenyl is important for providing a strong affinity for lanosterol 14α-demethylase (CgCYP51a1) and the fungal carbonic anhydrase (CgNce103), the S-enantiomer being more productive in these interactions.

10.
Eur J Med Chem ; 243: 114746, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36099749

ABSTRACT

In our overall goal to develop anti-Parkinson drugs, we designed novel diketopiperazines (DKP1-6) aiming to both reach the blood-brain barrier and counteract the oxidative stress related to Parkinson's Disease (PD). The anti-Parkinson properties of DKP 1-6 were evaluated using neurotoxin-treated PC12 cells, as in vitro model of PD, while their cytotoxicity and genotoxicity potentials were investigated in newborn rat cerebral cortex (RCC) and primary human whole blood (PHWB) cell cultures. The response against free radicals was evaluated by the total antioxidant capacity (TAC) assay. Comet assay was used to detect DNA damage while the content of 8-hydroxyl-2'-deoxyguanosine (8-OH-dG) was determined as a marker of oxidative DNA damage. PAMPA-BBB and Caco-2 assays were employed to evaluate the capability of DKP1-6 to cross the membranes. Stability studies were conducted in simulated gastric and intestinal fluids and human plasma. Results showed that DKP5-6 attenuate the MPP + -induced cell death on a nanomolar scale, but a remarkable effect was observed for DKP6 on Nrf2 activation that leads to the expression of genes involved in oxidative stress response thus increasing glutathione biosynthesis and ROS buffering. DKP5-6 resulted in no toxicity for RCC neurons and PHWB cells exposed to 10-500 nM concentrations during 24 h as determined by MTT and LDH assays and TAC levels were not altered in both cultured cell types. No significant difference in the induction of DNA damage was observed for DKP5-6. Both DKPs resulted stable in simulated gastric fluids (t1/2 > 22h). In simulated intestinal fluids, DKP5 underwent immediate hydrolysis while DKP6 showed a half-life higher than 3 h. In human plasma, DKP6 resulted quite stable. DKP6 displayed both high BBB and Caco-2 permeability confirming that the DKP scaffold represents a useful tool to improve the crossing of drugs through the biological membranes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Parkinson Disease , Animals , Rats , Humans , Levodopa/pharmacology , Levodopa/metabolism , Levodopa/therapeutic use , Blood-Brain Barrier/metabolism , Diketopiperazines/pharmacology , Diketopiperazines/metabolism , Caco-2 Cells , Carcinoma, Renal Cell/drug therapy , Oxidative Stress , Antioxidants/pharmacology , Parkinson Disease/drug therapy , Kidney Neoplasms/drug therapy
11.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36145282

ABSTRACT

Resveratrol (RSV) is a natural stilbene polyphenolic compound found in several plant species. It is characterized by antioxidant properties, and its role in controlling viral replication has been demonstrated for different viral infections. Despite its promising antiviral properties, RSV biological activity is limited by its low bioavailability and high metabolic rate. In this study, we optimized its structure by synthesizing new RSV derivatives that maintained the phenolic scaffold and contained different substitution patterns and evaluated their potential anti-influenza virus activity. The results showed that viral protein synthesis decreased 24 h post infection; particularly, the nitro-containing compounds strongly reduced viral replication. The molecules did not exert their antioxidant properties during infection; in fact, they were not able to rescue the virus-induced drop in GSH content or improve the antioxidant response mediated by the Nrf2 transcription factor and G6PD enzyme. Similar to what has already been reported for RSV, they interfered with the nuclear-cytoplasmic traffic of viral nucleoprotein, probably inhibiting cellular kinases involved in the regulation of specific steps of the virus life cycle. Overall, the data indicate that more lipophilic RSV derivatives have improved antiviral efficacy compared with RSV and open the way for new cell-targeted antiviral strategies.

12.
Molecules ; 27(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956831

ABSTRACT

PPARγ agonists are implicated in the regulation of diabetes and metabolic syndrome and have therapeutic potential in brain disorders. PPARγ modulates appetite through its central effects, especially on the hypothalamic arcuate nucleus (ARC). Previous studies demonstrated that the small molecule GL516 is a PPARγ agonist able to reduce oxidative stress and apoptosis with a potential neuroprotective role. Herein, we investigated the effects of GL516, in vitro and ex vivo, on the levels of hypothalamic dopamine (DA) and serotonin (5-HT). The gene expressions of neuropeptide Y, CART, AgRP, and POMC, which play master roles in the neuroendocrine regulation of feeding behavior and energy balance, were also evaluated. HypoE22 cells were treated with H2O2 (300 µM) for 2 h e 30' and with different concentrations of GL516 (1 nM-100 µM). The cell viability was evaluated after 24 and 48 h of culturing using the MTT test. DA and 5-HT levels in the HypoE22 cell supernatants were analyzed through HPLC; an ex vivo study on isolated hypothalamic specimens challenged with scalar concentrations of GL516 (1-100 µM) and with pioglitazone (10 µM) was carried out. The gene expressions of CART, NPY, AgRP, and POMC were also determined by a quantitative real-time PCR. The results obtained showed that GL516 was able to reduce DA and 5-HT turnover; moreover, it was effective in stimulating NPY and AgRP gene expressions with a concomitant reduction in CART and POMC gene expressions. These results highlight the capability of GL516 to modulate neuropeptide pathways deeply involved in appetite control suggesting an orexigenic effect. These findings emphasize the potential use of GL516 as a promising candidate for therapeutical applications in neurodegenerative diseases associated with the reduction in food intake and stimulation of catabolic pathways.


Subject(s)
PPAR gamma , Pro-Opiomelanocortin , Agouti-Related Protein/metabolism , Agouti-Related Protein/pharmacology , Hydrogen Peroxide/pharmacology , Hypothalamus/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/pharmacology , Serotonin/metabolism , Serotonin/pharmacology
13.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36015085

ABSTRACT

The antiproliferative effects played by benzothiazoles in different cancers have aroused the interest for these molecules as promising antitumor agents. In this work, a library of phenylacetamide derivatives containing the benzothiazole nucleus was synthesized and compounds were tested for their antiproliferative activity in paraganglioma and pancreatic cancer cell lines. The novel synthesized compounds induced a marked viability reduction at low micromolar concentrations both in paraganglioma and pancreatic cancer cells. Derivative 4l showed a greater antiproliferative effect and higher selectivity index against cancer cells, as compared to other compounds. Notably, combinations of derivative 4l with gemcitabine at low concentrations induced enhanced and synergistic effects on pancreatic cancer cell viability, thus supporting the relevance of compound 4l in the perspective of clinical translation. A target prediction analysis was also carried out on 4l by using multiple computational tools, identifying cannabinoid receptors and sentrin-specific proteases as putative targets contributing to the observed antiproliferative activity.

14.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35745586

ABSTRACT

Triple negative breast cancer (TNBC) is an urgent as well as huge medical challenge, which is associated with poor prognosis and responsiveness to chemotherapies. Since epigenetic changes are highly implicated in TNBC tumorigenesis and development, inhibitors of histone deacetylases (HDACIs) could represent a promising therapeutic strategy. Although clinical trials involving single HDACIs showed disappointing results against TNBC, recent studies emphasize the high potential impact of HDACIs in controlling TNBC. In addition, encouraging results stem from new compounds designed to obtain isoform selectivity and/or polypharmacological HDAC approach. The present review provides a discussion of the HDACIs pharmacophoric models and of the structural modifications, leading to compounds with a potent activity against TNBC progression.

15.
Eur J Med Chem ; 233: 114242, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35276424

ABSTRACT

Neurodegenerative diseases (NDs) are characterized by gradual and progressive loss of selectively vulnerable populations of neurons, including death of neurons in different regions, leading to nervous system dysfunction. However, pharmacological treatments are only symptomatic, because the exact causes of the disease are not yet known. For this reason, in recent years, the research has been focused on the discovery of new molecules able to target neuropathological pathways involved in NDs. A great deal of attention has been paid to natural polyphenols due to their many biological effects and resveratrol has attracted special interest since its ability to interact simultaneously with the multiple targets implicated in NDs. Moreover, the structural simplicity of the stilbene core, the broad spectrum of possible modifications, and the improved synthetic strategies, made resveratrol an attractive chemical starting point for the search of new entities with extended therapeutic uses in NDs. In this review, a systematic update of the resveratrol-based compounds, and Structure-Activity Relationship analysis were provided as promising drug candidates for the treatment of NDs.


Subject(s)
Neurodegenerative Diseases , Stilbenes , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Polyphenols , Resveratrol/pharmacology , Resveratrol/therapeutic use , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/therapeutic use , Structure-Activity Relationship
16.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34681208

ABSTRACT

A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b-c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure-activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b-c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.

17.
Eur J Med Chem ; 224: 113737, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34365129

ABSTRACT

The exploration of innovative aromatase inhibitors represents an important approach for the identification of new therapeutic treatments of breast cancer. In this respect, a series of phenyldiazenyl sulfonamides was designed, synthesized and tested. Compounds 3b, 3f and 5f showed an aromatase inhibition in the micromolar range and were evaluated in vitro on the human breast cancer cell line MCF7 by MTT assay, cytotoxicity assay (LDH release), cell cycle analysis and apoptosis, revealing a dose-dependent inhibition profile. In particular, 3f displayed the best reduction in terms of metabolic activity and an anti-proliferative effect on MCF7 cells, being blocked in the G1/S phase checkpoint. Moreover, computational studies were carried out to better understand at a molecular level of detail the rationale behind the effective binding to the active site of aromatase of the more active inhibitor 3f. The obtained results allow to consider this compound as an interesting lead for the development of a new class of non-steroidal aromatase inhibitors.


Subject(s)
Aromatase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Sulfonamides/therapeutic use , Aromatase Inhibitors/pharmacology , Female , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Sulfonamides/pharmacology
18.
J Enzyme Inhib Med Chem ; 36(1): 1632-1645, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34289751

ABSTRACT

Nonsteroidal aromatase inhibitors (NSAIs) are well-established drugs for the therapy of breast cancer. However, they display some serious side effects, and their efficacy can be compromised by the development of chemoresistance. Previously, we have reported different indazole-based carbamates and piperidine-sulphonamides as potent aromatase inhibitors. Starting from the most promising compounds, here we have synthesised new indazole and triazole derivatives and evaluated their biological activity as potential dual agents, targeting both the aromatase and the inducible nitric oxide synthase, being this last dysregulated in breast cancer. Furthermore, selected compounds were evaluated as antiproliferative and cytotoxic agents in the MCF-7 cell line. Moreover, considering the therapeutic diversity of azole-based compounds, all the synthesized compounds were also evaluated as antifungals on different Candida strains. A docking study, as well as molecular dynamics simulation, were carried out to shed light on the binding mode of the most interesting compound into the different target enzymes catalytic sites.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Aromatase Inhibitors/pharmacology , Azo Compounds/pharmacology , Breast Neoplasms/drug therapy , Molecular Docking Simulation , Mycoses/drug therapy , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aromatase Inhibitors/chemical synthesis , Aromatase Inhibitors/chemistry , Azo Compounds/chemical synthesis , Azo Compounds/chemistry , Candida/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship
19.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803309

ABSTRACT

The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aromatase Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Female , Humans , Molecular Targeted Therapy/trends
20.
Biomolecules ; 11(2)2021 01 28.
Article in English | MEDLINE | ID: mdl-33525407

ABSTRACT

Propolis, a product of the honey bee, has been used in traditional medicine for many years. A hydrophobic bioactive polyphenolic ester, caffeic acid phenethyl ester (CAPE), is one of the most extensively investigated active components of propolis. Several studies have indicated that CAPE has a broad spectrum of pharmacological activities as anti-oxidant, anti-inflammatory, anti-viral, anti-fungal, anti-proliferative, and anti-neoplastic properties. This review largely describes CAPE neuroprotective effects in many different conditions and summarizes its molecular mechanisms of action. CAPE was found to have a neuroprotective effect on different neurodegenerative disorders. At the basis of these effects, CAPE has the ability to protect neurons from several underlying causes of various human neurologic diseases, such as oxidative stress, apoptosis dysregulation, and brain inflammation. CAPE can also protect the nervous system from some diseases which negatively affect it, such as diabetes, septic shock, and hepatic encephalopathy, while numerous studies have demonstrated the neuroprotective effects of CAPE against adverse reactions induced by different neurotoxic substances. The potential role of CAPE in protecting the central nervous system (CNS) from secondary injury following various CNS ischemic conditions and CAPE anti-cancer activity in CNS is also reviewed. The structure-activity relationship of CAPE synthetic derivatives is discussed as well.


Subject(s)
Caffeic Acids/therapeutic use , Phenylethyl Alcohol/analogs & derivatives , Propolis/therapeutic use , Alzheimer Disease/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Antifungal Agents/chemistry , Antioxidants/chemistry , Antiviral Agents/chemistry , Apoptosis , Brain/drug effects , Caffeic Acids/chemistry , Humans , Inflammation , Ischemia/drug therapy , Neurodegenerative Diseases/drug therapy , Parkinson Disease/drug therapy , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/therapeutic use , Propolis/chemistry , Psychotic Disorders/drug therapy , Seizures/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...