Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 408
Filter
1.
Commun Biol ; 7(1): 569, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750228

ABSTRACT

Accumulation of amyloid-ß (Aß) and tau tangles are hallmarks of Alzheimer's disease. Aß is extracellular while tau tangles are typically intracellular, and it is unknown how these two proteinopathies are connected. Here, we use data of 1206 elders and test that RNA expression levels of GPER1, a transmembrane protein, modify the association of Aß with tau tangles. GPER1 RNA expression is related to more tau tangles (p = 0.001). Moreover, GPER1 expression modifies the association of immunohistochemistry-derived Aß load with tau tangles (p = 0.044). Similarly, GPER1 expression modifies the association between Aß proteoforms and tau tangles: total Aß protein (p = 0.030) and Aß38 peptide (p = 0.002). Using single nuclei RNA-seq indicates that GPER1 RNA expression in astrocytes modifies the relation of Aß load with tau tangles (p = 0.002), but not GPER1 in excitatory neurons or endothelial cells. We conclude that GPER1 may be a link between Aß and tau tangles driven mainly by astrocytic GPER1 expression.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Receptors, Estrogen , Receptors, G-Protein-Coupled , tau Proteins , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , tau Proteins/metabolism , tau Proteins/genetics , Female , Male , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Aged , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Aged, 80 and over , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Astrocytes/metabolism
2.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38626772

ABSTRACT

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Subject(s)
Frontotemporal Dementia , Neurons , Osteopontin , tau Proteins , Osteopontin/metabolism , Osteopontin/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Animals , tau Proteins/metabolism , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Microglia/metabolism , Microglia/pathology , Mutation/genetics
3.
Res Sq ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562777

ABSTRACT

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

4.
Hum Mol Genet ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38679805

ABSTRACT

Late-Onset Alzheimer's Disease (LOAD) is a heterogeneous neurodegenerative disorder with complex etiology and high heritability. Its multifactorial risk profile and large portions of unexplained heritability suggest the involvement of yet unidentified genetic risk factors. Here we describe the "whole person" genetic risk landscape of polygenic risk scores for 2218 traits in 2044 elderly individuals and test if novel eigen-PRSs derived from clustered subnetworks of single-trait PRSs can improve the prediction of LOAD diagnosis, rates of cognitive decline, and canonical LOAD neuropathology. Network analyses revealed distinct clusters of PRSs with clinical and biological interpretability. Novel eigen-PRSs (ePRS) from these clusters significantly improved LOAD-related phenotypes prediction over current state-of-the-art LOAD PRS models. Notably, an ePRS representing clusters of traits related to cholesterol levels was able to improve variance explained in a model of the brain-wide beta-amyloid burden by 1.7% (likelihood ratio test P = 9.02 × 10-7). All associations of ePRS with LOAD phenotypes were eliminated by the removal of APOE-proximal loci. However, our association analysis identified modules characterized by PRSs of high cholesterol and LOAD. We believe this is due to the influence of the APOE region from both PRSs. We found significantly higher mean SNP effects for LOAD in the intersecting APOE region SNPs. Combining genetic risk factors for vascular traits and dementia could improve current single-trait PRS models of LOAD, enhancing the use of PRS in risk stratification. Our results are catalogued for the scientific community, to aid in generating new hypotheses based on our maps of clustered PRSs and associations with LOAD-related phenotypes.

5.
Nat Genet ; 56(4): 605-614, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514782

ABSTRACT

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Genome-Wide Association Study/methods , Brain/metabolism , Quantitative Trait Loci/genetics , Genetic Variation/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
6.
Alzheimers Dement ; 20(5): 3290-3304, 2024 May.
Article in English | MEDLINE | ID: mdl-38511601

ABSTRACT

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Whole Genome Sequencing , Humans , Alzheimer Disease/genetics , Female , Male , Genetic Predisposition to Disease/genetics , Aged , Polymorphism, Single Nucleotide/genetics , Genetic Variation/genetics
7.
Alzheimers Dement ; 20(4): 2952-2967, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38470006

ABSTRACT

BACKGROUND: Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment. METHODS: Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging. Proteomic profiling, proteasome activity assays, and Western blotting were employed to examine neurons at baseline and in response to UPS perturbation. RESULTS: Neurons with lower basal UPS activity were more vulnerable to tau accumulation following mild UPS inhibition. Chronic reduction in proteasome activity in human neurons induced compensatory elevation of regulatory proteins involved in proteostasis and several proteasome subunits. DISCUSSION: These findings reveal that genetic variation influences basal UPS activity in human neurons and differentially sensitizes them to external factors perturbing the UPS, leading to the accumulation of aggregation-prone proteins such as tau. HIGHLIGHTS: Polygenic risk score for AD is associated with the ubiquitin-proteasome system (UPS) in neurons. Basal proteasome activity correlates with aggregation-prone protein levels in neurons. Genetic variation affects the response to proteasome inhibition in neurons. Neuronal proteasome perturbation induces an elevation in specific proteins involved in proteostasis. Low basal proteasome activity leads to enhanced tau accumulation with UPS challenge.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Proteostasis , Proteomics , Neurons/metabolism
8.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496679

ABSTRACT

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

9.
Transl Psychiatry ; 14(1): 83, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331937

ABSTRACT

Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical ß-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against ß-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.


Subject(s)
Alzheimer Disease , Receptors, Nicotinic , Humans , Alzheimer Disease/metabolism , Receptors, Nicotinic/genetics , Nicotine/pharmacology , Neurons/metabolism , Amyloid beta-Peptides/metabolism , Aging/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
10.
medRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38313266

ABSTRACT

Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.

11.
Neurobiol Aging ; 137: 1-7, 2024 May.
Article in English | MEDLINE | ID: mdl-38394722

ABSTRACT

In a recent proteome-wide study, we identified several candidate proteins for drug discovery whose cortical abundance was associated with cognitive resilience to late-life brain pathologies. This study examines the extent to which these proteins are associated with the brain structures of cognitive resilience in decedents from the Religious Orders Study and Memory and Aging Project. Six proteins were associated with brain morphometric characteristics related to higher resilience (i.e., larger anterior and medial temporal lobe volumes), and five were associated with morphometric characteristics related to lower resilience (i.e., enlarged ventricles). Two synaptic proteins, RPH3A and CPLX1, remained inversely associated with the lower resilience signature, after further controlling for 10 neuropathologic indices. These findings suggest preserved brain structure in periventricular regions as a potential mechanism by which RPH3A and CPLX1 are associated with cognitive resilience. Further work is needed to elucidate other mechanisms by which targeting these proteins can circumvent the effects of pathology on individuals at risk for cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Resilience, Psychological , Humans , Alzheimer Disease/metabolism , Brain/metabolism , Cognitive Dysfunction/pathology , Cognition
12.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370689

ABSTRACT

While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.

13.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260300

ABSTRACT

Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.

14.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260600

ABSTRACT

Alzheimer's disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-ß and tau1,2. Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis1-5, though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases6,7. Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher (~two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH)8,9. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH10,11. Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.

15.
medRxiv ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37425698

ABSTRACT

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for TWAS. To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies showed that SR-TWAS improved power, due to increased effective training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real application studies identified 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations were found for these significant risk genes.

16.
J Neurosci ; 44(3)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38050142

ABSTRACT

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Subject(s)
Alzheimer Disease , Resilience, Psychological , Female , Humans , Male , Alzheimer Disease/metabolism , Cognition , Neurons/metabolism , RNA , RNA Splicing/genetics , tau Proteins/metabolism
17.
medRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37961373

ABSTRACT

Background: Prior studies using the ADSP data examined variants within presenilin-2 ( PSEN2 ), presenilin-1 ( PSEN1 ), and amyloid precursor protein ( APP ) genes. However, previously-reported clinically-relevant variants and other predicted damaging missense (DM) variants have not been characterized in a newer release of the Alzheimer's Disease Sequencing Project (ADSP). Objective: To characterize previously-reported clinically-relevant variants and DM variants in PSEN2, PSEN1, APP within the participants from the ADSP. Methods: We identified rare variants (MAF <1%) previously-reported in PSEN2 , PSEN1, and APP in the available ADSP sample of 14,641 individuals with whole genome sequencing and 16,849 individuals with whole exome sequencing available for research-use (N total = 31,490). We additionally curated variants in these three genes from ClinVar, OMIM, and Alzforum and report carriers of variants in clinical databases as well as predicted DM variants in these genes. Results: We detected 31 previously-reported clinically-relevant variants with alternate alleles observed within the ADSP: 4 variants in PSEN2 , 25 in PSEN1 , and 2 in APP . The overall variant carrier rate for the 31 clinically-relevant variants in the ADSP was 0.3%. We observed that 79.5% of the variant carriers were cases compared to 3.9% were controls. In those with AD, the mean age of onset of AD among carriers of these clinically-relevant variants was 19.6 ± 1.4 years earlier compared with non-carriers (p-value=7.8×10 -57 ). Conclusion: A small proportion of individuals in the ADSP are carriers of a previously-reported clinically-relevant variant allele for AD and these participants have significantly earlier age of AD onset compared to non-carriers.

18.
Mult Scler Relat Disord ; 82: 105387, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134606

ABSTRACT

B-cell depleting therapies are effective in multiple sclerosis (MS) and are widely used (Hauser et al., 2017). Inflammatory vaginitis (IV), characterized by unexplained vaginal symptoms including mucopurulent discharge, pain, irritation, and dyspareunia, has been reported in one MS patient on ocrelizumab (Filikci and Jensen, 2022), and to be present in 3.5 % of women on rituximab for autoimmune diseases (Yockey et al., 2021). We report here four cases of IV in B cell depleted women with MS. B-cell reconstitution was temporally associated with improvement of IV symptoms. Further investigation and vigilance for this potential treatment emergent adverse event affecting sexual and reproductive health of women with MS is needed.


Subject(s)
Multiple Sclerosis , Vaginitis , Female , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Vaginitis/drug therapy , Vaginitis/diagnosis , Rituximab
19.
Biol Psychiatry ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38141910

ABSTRACT

BACKGROUND: Depression, a common psychiatric illness and global public health problem, remains poorly understood across different life stages, which hampers the development of novel treatments. METHODS: To identify new candidate genes for therapeutic development, we performed differential gene expression analysis of single-nucleus RNA sequencing data from the dorsolateral prefrontal cortex of older adults (n = 424) in relation to antemortem depressive symptoms. Additionally, we integrated genome-wide association study results for depression (n = 500,199) along with genetic tools for inferring the expression of 14,048 unique genes in 7 cell types and 52 cell subtypes to perform a transcriptome-wide association study of depression followed by Mendelian randomization. RESULTS: Our single-nucleus transcriptome-wide association study analysis identified 68 candidate genes for depression and showed the greatest number being in excitatory and inhibitory neurons. Of the 68 genes, 53 were novel compared to previous studies. Notably, gene expression in different neuronal subtypes had varying effects on depression risk. Traits with high genetic correlations with depression, such as neuroticism, shared more transcriptome-wide association study genes than traits that were not highly correlated with depression. Complementing these analyses, differential gene expression analysis across 52 neocortical cell subtypes showed that genes such as KCNN2, SCAI, WASF3, and SOCS6 were associated with late-life depressive symptoms in specific cell subtypes. CONCLUSIONS: These 2 sets of analyses illustrate the utility of large single-nucleus RNA sequencing data both to uncover genes whose expression is altered in specific cell subtypes in the context of depressive symptoms and to enhance the interpretation of well-powered genome-wide association studies so that we can prioritize specific susceptibility genes for further analysis and therapeutic development.

20.
Nat Commun ; 14(1): 7659, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036535

ABSTRACT

Many of the Alzheimer's disease (AD) risk genes are specifically expressed in microglia and astrocytes, but how and when the genetic risk localizing to these cell types contributes to AD pathophysiology remains unclear. Here, we derive cell-type-specific AD polygenic risk scores (ADPRS) from two extensively characterized datasets and uncover the impact of cell-type-specific genetic risk on AD endophenotypes. In an autopsy dataset spanning all stages of AD (n = 1457), the astrocytic ADPRS affected diffuse and neuritic plaques (amyloid-ß), while microglial ADPRS affected neuritic plaques, microglial activation, neurofibrillary tangles (tau), and cognitive decline. In an independent neuroimaging dataset of cognitively unimpaired elderly (n = 2921), astrocytic ADPRS was associated with amyloid-ß, and microglial ADPRS was associated with amyloid-ß and tau, connecting cell-type-specific genetic risk with AD pathology even before symptom onset. Together, our study provides human genetic evidence implicating multiple glial cell types in AD pathophysiology, starting from the preclinical stage.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/metabolism , Plaque, Amyloid/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...