Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(9): 14478-14491, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473189

ABSTRACT

The sandwiched material-analyte layer in the surface plasmon resonance (SPR)-Otto configuration emulates an optical cavity and, coupled with large optical nonlinearity material, the rate of light escaping from the system is reduced, allowing the formation of a strong coupling regime. Here, we report an organic pentamer SPR sensor using the Otto configuration to induce a strong coupling regime for creatinine detection. Prior to that, the SPR sensor chip was modified with an organic pentamer, 1,4-bis[2-(5-thiophene-2-yl)-1-benzothiopene]-2,5-dioctyloxybenzene (BOBzBT2). To improve the experimental calibration curve, a normalisation approach based on the strong coupling-induced second dip was also developed. By using this procedure, the performance of the sensor improved to 0.11 mg/dL and 0.36 mg/dL for the detection and quantification limits, respectively.


Subject(s)
Surface Plasmon Resonance , Creatinine , Surface Plasmon Resonance/methods
2.
Appl Opt ; 61(3): 744-750, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35200779

ABSTRACT

The polarization response of graphene oxide (GO)-coated planarized optical waveguides is used to determine the complex refractive index of GO film. GO films with thicknesses between 0.10 and 0.71 µm were coated on planarized optical waveguides. GO-coated waveguides exhibit large polarization dependent losses-and the polarization response depends strongly on the GO coating thickness. The response was used, together with finite element analysis, to determine the complex refractive index of the GO film. The complex refractive indices of GO films for both TE- and TM-polarized light at a wavelength of 1550 nm were found to be 1.71+0.09i and 1.58+0.05i, respectively. The uncertainties of nGO and kGO for TE-polarized light are ±0.02 and ±0.03, respectively, whereas the uncertainties of nGO and kGO for TM-polarized light are ±0.05 and ±0.02, respectively.

3.
Opt Express ; 21(8): 9343-52, 2013 Apr 22.
Article in English | MEDLINE | ID: mdl-23609645

ABSTRACT

Depositing very thin organic films on the surface of arrays of asymmetric split-ring resonators (A-SRRs) produces a shift in their resonance spectra that can be utilized for sensitive analyte detection. Here we show that when poly-methyl-methacrylate (PMMA) is used as an organic probe (analyte) on top of the A-SRR array, the phase and amplitude of a characteristic molecular Fano resonance associated with a carbonyl bond changes according to the spectral positions of the trapped mode resonance of the A-SRRs and their plasmonic reflection peaks. Furthermore, we localize blocks of PMMA at different locations on the A-SRR array to determine the effectiveness of detection of very small amounts of non-uniformly distributed analyte.


Subject(s)
Metals/chemistry , Polymethyl Methacrylate/chemistry , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis
4.
Appl Opt ; 51(15): 2772-7, 2012 May 20.
Article in English | MEDLINE | ID: mdl-22614578

ABSTRACT

The idea of applying a simple Fabry-Perot fiber laser (FPFL) set-up in a free-running condition as an acoustic sensing medium is proposed. Conventional optical microphone requires a stringently aligned diaphragm to mediate the acoustic impedance mismatch between air and silica fiber. Motivated by the difficulty of optical sensing of airborne acoustic waves, a new sensing method is proposed to sense acoustic waves without the assistance of a diaphragm as transducer. By studying the output power fluctuation of the FPFL, the operating bandwidth and sensitivity of the proposed sensing method are determined. The tunability of the resonant frequency from 5 kHz to 85 kHz allows sensing of acoustic waves in the range of 100 Hz to 100 kHz. Tuning of the resonant frequency can be performed by changing the optical pumping power from as low as 10 mW to 68.5 mW or higher.

5.
Appl Opt ; 50(19): 3233-9, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21743523

ABSTRACT

Experimentally measured optical properties of photonic crystal LEDs are reported here. Photonic crystal and photonic quasi-crystal structures were fabricated on GaN epilayer LED wafer material using both direct-write electron beam lithography and nanoimprint lithography. Some of these structures were processed to make finished LEDs. Both electroluminescence and photoluminescence measurements were performed on these structures. Devices were characterized for their current-voltage characteristics, emission spectra, far-field emission pattern, and angular emission pattern. These results are useful for fabricating photonic crystal LEDs and assessing their operational properties.

6.
Opt Lett ; 35(23): 3925-7, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21124567

ABSTRACT

In this Letter, we report group index measurements of the supermodes of an array of two strongly coupled silicon-on-insulator waveguides. We observe coupling-induced dispersion that is greater than the material and waveguide dispersion of the individual waveguides. We demonstrate that the system transforms from supporting the two supermodes associated with two coupled waveguides to the single mode of a slot waveguide within the investigated spectral range. During the cutoff of the antisymmetric supermode, an anti-crossing between the symmetric TM and antisymmetric TE supermodes has been observed.

7.
Opt Express ; 18(10): 10557-66, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20588908

ABSTRACT

The interferogram of a high index phase mask of 200 nm period under normal incidence of a collimated beam at 244 nm wavelength with substantially suppressed zeroth order produces a 100 nm period grating in a resist film under immersion. The paper describes the phase mask design, its fabrication, the effect of electron-beam lithographic stitching errors and optical assessment of the fabricated sub-cutoff grating.


Subject(s)
Nanotechnology/instrumentation , Photography/instrumentation , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis
8.
Opt Express ; 18(11): 11202-8, 2010 May 24.
Article in English | MEDLINE | ID: mdl-20588979

ABSTRACT

At higher frequencies (visible and infrared) both the dimensions and the individual metal properties play an important role in determining the resonant response of arrays of SRRs. As a result, a substantial difference between the responses of gold- and Al-based SRR arrays has been observed. Additionally, deposition of gold SRRs onto a substrate typically involves the use of an additional adhesion layer. Titanium (Ti) is the most common adhesive thin-film material used to attach gold onto dielectric/semiconductor substrates. In this paper we investigate the impact of the Ti adhesion layer on the overall response of Au-based nano-scale SRRs. The results quantify the extent to which the overall difference in the resonance frequencies between Au- and Al-based SRRs is due to the presence of the Ti. We show that even a 2-nm-thick Ti layer can red-shift the position of SRR resonance by 20 nm. Finally, we demonstrate that by intentional addition of titanium in the Au-based SRRs, their overall resonant response can be tuned widely in frequency, but at the expense of resonance magnitude.


Subject(s)
Gold/chemistry , Optical Devices , Titanium/chemistry , Transducers , Adhesiveness , Equipment Design , Equipment Failure Analysis , Vibration
9.
Opt Express ; 18(3): 3210-8, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20174160

ABSTRACT

In this paper, we report on a substantial shift in the response of arrays of similarly sized Split Ring Resonators (SRRs), having a rectangular U-shaped form--and made respectively of aluminium and of gold. We also demonstrate that it is possible to obtain the polarization dependent LC peak in the visible spectrum--by using SRRs based on aluminium, rather than gold. The response of metallic SRRs scales linearly with size. At optical frequencies, metals stop behaving like nearly perfect conductors and begin displaying characteristically different behaviour, in accord with the Drude model. The response at higher frequencies, such as those in the visible and near infra-red, depends both on their size and on the individual properties of the metals used. A higher frequency limit has been observed in the polarization dependent response (in particular the LC resonance peak) of gold based SRRs in the near infrared region. By using aluminium based SRRs instead of gold, the higher frequency limit of the LC resonance can be further shifted into the visible spectrum.

10.
Opt Express ; 18(2): 1450-61, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20173973

ABSTRACT

We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.


Subject(s)
Nanotechnology/instrumentation , Nanotubes/chemistry , Optical Devices , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Silicon/chemistry , Transducers , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Nanotubes/ultrastructure , Photons
11.
Opt Express ; 17(16): 13315-25, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19654736

ABSTRACT

We propose a silicon-on-insulator (SOI) photonic crystal waveguide within a hexagonal lattice of elliptical air holes for slow light propagation with group velocity in the range 0.0028c to 0.044c and ultra-flattened group velocity dispersion (GVD). The proposed structure is also investigated for its application as an optical buffer with a large value of normalized delay bandwidth product (DBP), equal to 0.778. Furthermore it is shown that the proposed structure can also be used for time or wavelength-division demultiplexing to separate two telecom wavelengths, 1.31 microm and 1.55 microm, on a useful time-scale and with minimal distortion.


Subject(s)
Manufactured Materials , Optical Devices , Silicon/chemistry , Computer Simulation , Computer-Aided Design , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Light , Miniaturization , Models, Theoretical , Photons , Scattering, Radiation , Surface Properties
12.
Opt Express ; 17(2): 1107-15, 2009 Jan 19.
Article in English | MEDLINE | ID: mdl-19158928

ABSTRACT

Asymmetric Split Ring Resonators are known to exhibit resonant modes where the optical electric field is strongest near the ends of the arms, thereby increasing the sensitivity of spectral techniques such as surface enhanced Raman scattering (SERS). By producing asymmetry in the structures, the two arms of the ring produce distinct plasmonic resonances related to their lengths - but are also affected by the presence of the other arm. This combination leads to a steepening of the slope of the reflection spectrum between the resonances that increases the sensitivity of the resonant behavior to the addition of different molecular species. We describe experimental results, supported by simulation, on the resonances of a series of circular split ring resonators with different gap and section lengths--at wavelengths in the mid-infra red regions of the spectrum--and their utilization for highly sensitive detection of organic compounds. We have used thin films of PMMA with different thicknesses, resulting in characteristic shifts from the original resonance. We also demonstrate matching of asymmetric split ring resonators to a molecular resonance of PMMA.

13.
Opt Express ; 16(16): 12084-9, 2008 Aug 04.
Article in English | MEDLINE | ID: mdl-18679482

ABSTRACT

We present experimental results on photonic crystal/photonic wire micro-cavity structures that demonstrate further enhancement of the quality-factor (Q-factor)--up to approximately 149,000--in the fibre telecommunications wavelength range. The Q-values and the useful transmission levels achieved are due, in particular, to the combination of both tapering within and outside the micro-cavity, with carefully designed hole diameters and non-periodic hole placement within the tapered section. Our 2D Finite Difference Time Domain (FDTD) simulation approach shows good agreement with the experimental results.


Subject(s)
Optics and Photonics/instrumentation , Silicon/chemistry , Transducers , Equipment Design , Equipment Failure Analysis , Miniaturization , Photons
14.
Opt Express ; 15(11): 6569-75, 2007 May 28.
Article in English | MEDLINE | ID: mdl-19546965

ABSTRACT

Photonic crystal tapers have been designed for coupling of light from ridge waveguides into low group velocity photonic crystal channel guides. The coupling efficiency is increased from 3 % (case of butt-coupling) to 97 % for frequencies in the band-edge region, corresponding to a group index close to 100, as predicted using 2D finite-difference time-domain simulations.

15.
Appl Opt ; 45(25): 6507-10, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16912789

ABSTRACT

We have designed and fabricated a 2D photonic crystal (PhC) asymmetric Mach-Zehnder (M-Z) device structure using W1 channel waveguides oriented along ?K directions in silicon-on-insulator material. The asymmetric structure was designed using a PhC lattice with different filling factors. The asymmetry is obtained as a difference of two periods in the physical path length (DL=2a) between the arms, and it was sufficient to produce a pi phase shift in the region of operation around lambda=1500 nm. The asymmetric M-Z structure is more sensitive than a symmetric M-Z structure to changes in the refractive index and therefore becomes an interesting platform for switching and sensor devices.

16.
Opt Express ; 14(12): 5617-33, 2006 Jun 12.
Article in English | MEDLINE | ID: mdl-19516730

ABSTRACT

Air hole 2D photonic crystals (PhC) and air slots have been used in association with semiconductor ridge waveguides to produce highly compact beam-splitters (less than 10 microm x10 microm) for power or polarization separators and mirrors. An efficiency of 99 % (in both 2D and 3D formulations) has been obtained for the power beam-splitter using finite-difference time-domain (FDTD) simulations - and around 95 % has been measured experimentally for structures realized in silicon-on-insulator (SOI) waveguides. In the polarization splitter, an extinction ratio as large as 11 dB was also reached experimentally. Examples of combinations of these elements in the form of interferometers are also presented.

17.
Nano Lett ; 5(12): 2646-50, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16351230

ABSTRACT

Three-dimensional (3D) photonic crystals (PhCs) are now beginning to acquire functionality via the use of dopants and heterostructures. However, the self-organized fabrication of large-area single crystals that are free of cracks and stacking faults has remained a challenge. We demonstrate a technology for the fabrication of (100)-oriented thin film 3D opal PhCs that exhibit no cracks over areas having no intrinsic size limit via a modified template-assisted colloidal self-assembly approach onto a patterned substrate. This technology potentially makes available large area regions of single photonic crystal, which can be used for optoelectronic devices.


Subject(s)
Colloids/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Photochemistry/methods , Silicon/chemistry , Electronics/methods , Materials Testing , Molecular Conformation , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...