Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 15: 1359116, 2024.
Article in English | MEDLINE | ID: mdl-38566854

ABSTRACT

Introduction: Mal de Debarquement Syndrome (MdDS) is a debilitating neuro-otological disorder. Patients experience almost continuously a perception of self-motion. This syndrome can be motion-triggered (MT-MdDS), such as on a boat, or occur spontaneously or have other triggers (SO-MdDS) in the absence of such motion. Because the pathophysiological mechanism is unknown, treatment options and symptom management strategies are limited. One available treatment protocol involves a readaptation of the vestibular ocular reflex (VOR). This study assesses the effectiveness of vestibulo-ocular reflex (VOR) readaptation in 131 consecutive patients with a fixed protocol. Methods: We administered 131 treatments involving optokinetic stimulation (OKS) paired with a fixed head roll at 0.167 Hz over two to five consecutive days. Each day, four-minute treatment blocks were scheduled twice in the morning and afternoon. Treatment effectiveness was evaluated through questionnaires and posturography. Results: We observed significant improvements in the visual analog scale (VAS), MdDS symptom questionnaire, and posturography measures from pre- to post-treatment. No significant differences were found in outcome variables between MT- and SO-MdDS onsets. Conclusion: Symptoms improved subjectively and objectively in patients' post-treatment. The overall success rate was 64.1%, with no significant difference between MT (64.2%) and SO (63.3%). This study supports the conclusion that VOR readaptation treatment provides relief for two-thirds of MdDS patients, irrespective of the onset type. Based on consistency in the findings, we propose a standardized method for treatment of MdDS based on the OKS with head roll paradigm.

2.
Front Neurol ; 14: 1248715, 2023.
Article in English | MEDLINE | ID: mdl-37693771

ABSTRACT

Introduction: In a previous manuscript from our research group, the concept of vestibular co-stimulation was investigated in adult subjects who received a cochlear implant (CI). Despite what literature reports state, no signs of vestibular co-stimulation could be observed. Results: In this case report, it was described how a woman, who previously underwent a neurectomy of the left vestibular nerve and suffers from bilateral vestibulopathy (BVP), reported improved balance whenever her CI on the left was stimulating. Unexpectedly, the sway analyses during posturography indeed showed a clinically relevant improvement when the CI was activated. Discussion: Vestibular co-stimulation as a side effect of CI stimulation could not be the explanation in this case due to the ipsilateral vestibular neurectomy. It is more likely that the results can be attributed to the electrically restored auditory input, which serves as an external reference for maintaining balance and spatial orientation. In addition, this patient experienced disturbing tinnitus whenever her CI was deactivated. It is thus plausible that the tinnitus increased her cognitive load, which was already increased because of the BVP, leading to an increased imbalance in the absence of CI stimulation.

3.
Commun Biol ; 6(1): 46, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639420

ABSTRACT

The prospect of continued manned space missions warrants an in-depth understanding of how prolonged microgravity affects the human brain. Functional magnetic resonance imaging (fMRI) can pinpoint changes reflecting adaptive neuroplasticity across time. We acquired resting-state fMRI data of cosmonauts before, shortly after, and eight months after spaceflight as a follow-up to assess global connectivity changes over time. Our results show persisting connectivity decreases in posterior cingulate cortex and thalamus and persisting increases in the right angular gyrus. Connectivity in the bilateral insular cortex decreased after spaceflight, which reversed at follow-up. No significant connectivity changes across eight months were found in a matched control group. Overall, we show that altered gravitational environments influence functional connectivity longitudinally in multimodal brain hubs, reflecting adaptations to unfamiliar and conflicting sensory input in microgravity. These results provide insights into brain functional modifications occurring during spaceflight, and their further development when back on Earth.


Subject(s)
Weightlessness , Humans , Brain/diagnostic imaging , Gyrus Cinguli , Magnetic Resonance Imaging/methods , Parietal Lobe
4.
Front Neurol ; 13: 882225, 2022.
Article in English | MEDLINE | ID: mdl-36061986

ABSTRACT

Background: Since a stroke can impair bimanual activities, enhancing bimanual cooperation through motor skill learning may improve neurorehabilitation. Therefore, robotics and neuromodulation with transcranial direct current stimulation (tDCS) are promising approaches. To date, tDCS has failed to enhance bimanual motor control after stroke possibly because it was not integrating the hypothesis that the undamaged hemisphere becomes the major poststroke hub for bimanual control. Objective: We tested the following hypotheses: (I) In patients with chronic hemiparetic stroke training on a robotic device, anodal tDCS applied over the primary motor cortex of the undamaged hemisphere enhances bimanual motor skill learning compared to sham tDCS. (II) The severity of impairment correlates with the effect of tDCS on bimanual motor skill learning. (III) Bimanual motor skill learning is less efficient in patients than in healthy individuals (HI). Methods: A total of 17 patients with chronic hemiparetic stroke and 7 healthy individuals learned a complex bimanual cooperation skill on the REAplan® neurorehabilitation robot. The bimanual speed/accuracy trade-off (biSAT), bimanual coordination (biCo), and bimanual force (biFOP) scores were computed for each performance. In patients, real/sham tDCS was applied in a crossover, randomized, double-blind approach. Results: Compared to sham, real tDCS did not enhance bimanual motor skill learning, retention, or generalization in patients, and no correlation with impairment was noted. The healthy individuals performed better than patients on bimanual motor skill learning, but generalization was similar in both groups. Conclusion: A short motor skill learning session with a robotic device resulted in the retention and generalization of a complex skill involving bimanual cooperation. The tDCS strategy that would best enhance bimanual motor skill learning after stroke remains unknown. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT02308852, identifier: NCT02308852.

5.
NPJ Microgravity ; 8(1): 27, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858981

ABSTRACT

Otoliths are the primary gravity sensors of the vestibular system and are responsible for the ocular counter-roll (OCR). This compensatory eye torsion ensures gaze stabilization and is sensitive to a head roll with respect to gravity and the Gravito-Inertial Acceleration vector during, e.g., centrifugation. To measure the effect of prolonged spaceflight on the otoliths, we quantified the OCR induced by off-axis centrifugation in a group of 27 cosmonauts in an upright position before and after their 6-month space mission to the International Space Station. We observed a significant decrease in OCR early postflight, larger for first-time compared to experienced flyers. We also found a significantly larger torsion for the inner eye, the eye closest to the rotation axis. Our results suggest that experienced cosmonauts have acquired the ability to adapt faster after G-transitions. These data provide a scientific basis for sending experienced cosmonauts on challenging missions that include multiple g-level transitions.

6.
Proc Natl Acad Sci U S A ; 119(17): e2120439119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35412862

ABSTRACT

Long-duration spaceflight induces changes to the brain and cerebrospinal fluid compartments and visual acuity problems known as spaceflight-associated neuro-ocular syndrome (SANS). The clinical relevance of these changes and whether they equally affect crews of different space agencies remain unknown. We used MRI to analyze the alterations occurring in the perivascular spaces (PVS) in NASA and European Space Agency astronauts and Roscosmos cosmonauts after a 6-mo spaceflight on the International Space Station (ISS). We found increased volume of basal ganglia PVS and white matter PVS (WM-PVS) after spaceflight, which was more prominent in the NASA crew than the Roscosmos crew. Moreover, both crews demonstrated a similar degree of lateral ventricle enlargement and decreased subarachnoid space at the vertex, which was correlated with WM-PVS enlargement. As all crews experienced the same environment aboard the ISS, the differences in WM-PVS enlargement may have been due to, among other factors, differences in the use of countermeasures and high-resistive exercise regimes, which can influence brain fluid redistribution. Moreover, NASA astronauts who developed SANS had greater pre- and postflight WM-PVS volumes than those unaffected. These results provide evidence for a potential link between WM-PVS fluid and SANS.


Subject(s)
Astronauts , Cerebrospinal Fluid , Glymphatic System , Space Flight , Vision Disorders , Cerebrospinal Fluid/diagnostic imaging , Glymphatic System/diagnostic imaging , Humans , Magnetic Resonance Imaging , Vision Disorders/cerebrospinal fluid , Vision Disorders/diagnostic imaging , White Matter/diagnostic imaging
7.
Stroke ; 53(7): 2361-2368, 2022 07.
Article in English | MEDLINE | ID: mdl-35311345

ABSTRACT

BACKGROUND: It is currently unknown whether motor skill learning (MSkL) with the paretic upper limb is possible during the acute phase after stroke and whether lesion localization impacts MSkL. Here, we investigated MSkL in acute (1-7 days post) stroke patients compared with healthy individuals (HIs) and in relation to voxel-based lesion symptom mapping. METHODS: Twenty patients with acute stroke and 35 HIs were trained over 3 consecutive days on a neurorehabilitation robot measuring speed, accuracy, and movement smoothness variables. Patients used their paretic upper limb and HI used their nondominant upper limb on an MSkL task involving a speed/accuracy trade-off. Generalization was evaluated on day 3. All patients underwent a 3-dimensional magnetic resonance imaging used for VSLM. RESULTS: Most patients achieved MSkL demonstrated by day-to-day retention and generalization of the newly learned skill on day 3. When comparing raw speed/accuracy trade-off values, HI achieved larger MSkL than patients. However, relative speed/accuracy trade-off values showed no significant differences in MSkL between patients and HI on day 3. In patients, MSkL progression correlated with acute motor and cognitive impairments. The voxel-based lesion symptom mapping showed that acute vascular damage to the thalamus or the posterior limb of the internal capsule reduced MSkL. CONCLUSIONS: Despite worse motor performance for acute stroke patients compared with HI, most patients were able to achieve MSkL with their paretic upper limb. Damage to the thalamus and posterior limb of the internal capsule, however, reduced MSkL. These data show that MSkL could be implemented into neurorehabilitation during the acute phase of stroke, particularly for patients without lesions to the thalamus and posterior limb of the internal capsule. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01519843.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Internal Capsule/diagnostic imaging , Motor Skills , Stroke/diagnostic imaging , Stroke/pathology , Thalamus/diagnostic imaging , Thalamus/pathology , Upper Extremity
8.
Front Neural Circuits ; 16: 815838, 2022.
Article in English | MEDLINE | ID: mdl-35250494

ABSTRACT

Humans undergo extreme physiological changes when subjected to long periods of weightlessness, and as we continue to become a space-faring species, it is imperative that we fully understand the physiological changes that occur in the human body, including the brain. In this study, we present findings of brain structural changes associated with long-duration spaceflight based on diffusion magnetic resonance imaging (dMRI) data. Twelve cosmonauts who spent an average of six months aboard the International Space Station (ISS) were scanned in an MRI scanner pre-flight, ten days after flight, and at a follow-up time point seven months after flight. We performed differential tractography, a technique that confines white matter fiber tracking to voxels showing microstructural changes. We found significant microstructural changes in several large white matter tracts, such as the corpus callosum, arcuate fasciculus, corticospinal, corticostriatal, and cerebellar tracts. This is the first paper to use fiber tractography to investigate which specific tracts exhibit structural changes after long-duration spaceflight and may direct future research to investigate brain functional and behavioral changes associated with these white matter pathways.


Subject(s)
Space Flight , Weightlessness , White Matter , Astronauts , Brain/diagnostic imaging , Brain/pathology , Humans , White Matter/diagnostic imaging , White Matter/pathology
9.
Sci Rep ; 9(1): 7326, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086238

ABSTRACT

Eichhornia crassipes is well known as an invasive aquatic plant. It is also used very effectively in phytoremediation, particularly for the rhizofiltration of effluents contaminated by heavy metals. In this article, we show that it is also an excellent bioindicator of water polluted by worrying organic pollutants such as endocrine disruptors and neonicotinoids. As a proof of concept, di-n-hexylphthalate, pentabromodiphenyl ether, nitenpyram, acetamiprid and bis (3-tert-butyl-4-hydroxy-6-methylphenyl) sulfide were clearly identified by UHPLC-HRMS or GC-MS in the root system of E. crassipes after a short period of exposure. These results open up new perspectives for the remediation of water polluted by alarming organic pollutants.


Subject(s)
Eichhornia/chemistry , Environmental Monitoring/methods , Sentinel Species/metabolism , Water Pollutants, Chemical/analysis , Water Pollution/prevention & control , Biodegradation, Environmental , Eichhornia/metabolism , Endocrine Disruptors/analysis , Endocrine Disruptors/metabolism , Neonicotinoids/analysis , Neonicotinoids/metabolism , Plant Roots/chemistry , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...