Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339195

ABSTRACT

The consensus molecular subtypes (CMSs) classification of colorectal cancer (CRC) is a system for patient stratification that can be potentially applied to therapeutic decisions. Hakai (CBLL1) is an E3 ubiquitin-ligase that induces the ubiquitination and degradation of E-cadherin, inducing epithelial-to-mesenchymal transition (EMT), tumour progression and metastasis. Using bioinformatic methods, we have analysed CBLL1 expression on a large integrated cohort of primary tumour samples from CRC patients. The cohort included survival data and was divided into consensus molecular subtypes. Colon cancer tumourspheres were used to analyse the expression of stem cancer cells markers via RT-PCR and Western blotting. We show that CBLL1 gene expression is specifically associated with canonical subtype CMS2. WNT target genes LGR5 and c-MYC show a similar association with CMS2 as CBLL1. These mRNA levels are highly upregulated in cancer tumourspheres, while CBLL1 silencing shows a clear reduction in tumoursphere size and in stem cell biomarkers. Importantly, CMS2 patients with high CBLL1 expression displayed worse overall survival (OS), which is similar to that associated with CMS4 tumours. Our findings reveal CBLL1 as a specific biomarker for CMS2 and the potential of using CMS2 with high CBLL1 expression to stratify patients with poor OS.


Subject(s)
Colorectal Neoplasms , Humans , Biomarkers , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Genes, myc , Survival Analysis , Ubiquitin-Protein Ligases/metabolism
2.
Res Sq ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38405932

ABSTRACT

Post-pregnancy breast cancer often carries a poor prognosis, posing a major clinical challenge. The increasing trend of later-life pregnancies exacerbates this risk, highlighting the need for effective chemoprevention strategies. Current options, limited to selective estrogen receptor modulators, aromatase inhibitors, or surgical procedures, offer limited efficacy and considerable side effects. Here, we report that cabergoline, a dopaminergic agonist, reduces the risk of breast cancer post-pregnancy in a Brca1/P53-deficient mouse model, with implications for human breast cancer prevention. We show that a single dose of cabergoline administered post-pregnancy significantly delayed the onset and reduced the incidence of breast cancer in Brca1/P53-deficient mice. Histological analysis revealed a notable acceleration in post-lactational involution over the short term, characterized by increased apoptosis and altered gene expression related to ion transport. Over the long term, histological changes in the mammary gland included a reduction in the ductal component, decreased epithelial proliferation, and a lower presence of recombinant Brca1/P53 target cells, which are precursors of tumors. These changes serve as indicators of reduced breast cancer susceptibility. Additionally, RNA sequencing identified gene expression alterations associated with decreased proliferation and mammary gland branching. Our findings highlight a mechanism wherein cabergoline enhances the protective effect of pregnancy against breast cancer by potentiating postlactational involution. Notably, a retrospective cohort study in women demonstrated a markedly lower incidence of post-pregnancy breast cancer in those treated with cabergoline compared to a control group. Our work underscores the importance of enhancing postlactational involution as a strategy for breast cancer prevention, and identifies cabergoline as a promising, low-risk option in breast cancer chemoprevention. This strategy has the potential to revolutionize breast cancer prevention approaches, particularly for women at increased risk due to genetic factors or delayed childbirth, and has wider implications beyond hereditary breast cancer cases.

3.
BMC Genomics ; 24(1): 576, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759179

ABSTRACT

BACKGROUND: Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) share phenotypic and molecular commonalities, including the fact that they can be caused by mutations in ubiquitous proteins involved in RNA metabolism, namely SMN, TDP-43 and FUS. Although this suggests the existence of common disease mechanisms, there is currently no model to explain the resulting motor neuron dysfunction. In this work we generated a parallel set of Drosophila models for adult-onset RNAi and tagged neuronal expression of the fly orthologues of the three human proteins, named Smn, TBPH and Caz, respectively. We profiled nuclear and cytoplasmic bound mRNAs using a RIP-seq approach and characterized the transcriptome of the RNAi models by RNA-seq. To unravel the mechanisms underlying the common functional impact of these proteins on neuronal cells, we devised a computational approach based on the construction of a tissue-specific library of protein functional modules, selected by an overall impact score measuring the estimated extent of perturbation caused by each gene knockdown. RESULTS: Transcriptome analysis revealed that the three proteins do not bind to the same RNA molecules and that only a limited set of functionally unrelated transcripts is commonly affected by their knock-down. However, through our integrative approach we were able to identify a concerted effect on protein functional modules, albeit acting through distinct targets. Most strikingly, functional annotation revealed that these modules are involved in critical cellular pathways for motor neurons, including neuromuscular junction function. Furthermore, selected modules were found to be significantly enriched in orthologues of human neuronal disease genes. CONCLUSIONS: The results presented here show that SMA and ALS disease-associated genes linked to RNA metabolism functionally converge on neuronal protein complexes, providing a new hypothesis to explain the common motor neuron phenotype. The functional modules identified represent promising biomarkers and therapeutic targets, namely given their alteration in asymptomatic settings.


Subject(s)
Amyotrophic Lateral Sclerosis , Drosophila Proteins , Muscular Atrophy, Spinal , Adult , Humans , Animals , Amyotrophic Lateral Sclerosis/genetics , Drosophila/genetics , Motor Neurons , RNA , DNA-Binding Proteins , Drosophila Proteins/genetics
5.
Nat Commun ; 14(1): 5159, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620322

ABSTRACT

The initial steps of B-cell acute lymphoblastic leukemia (B-ALL) development usually pass unnoticed in children. Several preclinical studies have shown that exposure to immune stressors triggers the transformation of preleukemic B cells to full-blown B-ALL, but how this takes place is still a longstanding and unsolved challenge. Here we show that dysregulation of innate immunity plays a driving role in the clonal evolution of pre-malignant Pax5+/- B-cell precursors toward leukemia. Transcriptional profiling reveals that Myd88 is downregulated in immune-stressed pre-malignant B-cell precursors and in leukemic cells. Genetic reduction of Myd88 expression leads to a significant increase in leukemia incidence in Pax5+/-Myd88+/- mice through an inflammation-dependent mechanism. Early induction of Myd88-independent Toll-like receptor 3 signaling results in a significant delay of leukemia development in Pax5+/- mice. Altogether, these findings identify a role for innate immunity dysregulation in leukemia, with important implications for understanding and therapeutic targeting of the preleukemic state in children.


Subject(s)
Burkitt Lymphoma , Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Precursor Cells, B-Lymphoid , Myeloid Differentiation Factor 88/genetics , Signal Transduction , Adaptor Proteins, Signal Transducing , Immunity, Innate , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
6.
Mol Cancer ; 22(1): 119, 2023 07 29.
Article in English | MEDLINE | ID: mdl-37516825

ABSTRACT

Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N7-methylguanosine (m7G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m7G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m7G tRNA methylation in cancer cell translation control and tumour biology.


Subject(s)
Carcinogenesis , Prostatic Neoplasms , Male , Humans , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Prostatic Neoplasms/genetics , Transcription, Genetic , RNA Processing, Post-Transcriptional , Methyltransferases/genetics
7.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445946

ABSTRACT

In the last two decades, many detailed full transcriptomic studies on complex biological samples have been published and included in large gene expression repositories. These studies primarily provide a bulk expression signal for each sample, including multiple cell-types mixed within the global signal. The cellular heterogeneity in these mixtures does not allow the activity of specific genes in specific cell types to be identified. Therefore, inferring relative cellular composition is a very powerful tool to achieve a more accurate molecular profiling of complex biological samples. In recent decades, computational techniques have been developed to solve this problem by applying deconvolution methods, designed to decompose cell mixtures into their cellular components and calculate the relative proportions of these elements. Some of them only calculate the cell proportions (supervised methods), while other deconvolution algorithms can also identify the gene signatures specific for each cell type (unsupervised methods). In these work, five deconvolution methods (CIBERSORT, FARDEEP, DECONICA, LINSEED and ABIS) were implemented and used to analyze blood and immune cells, and also cancer cells, in complex mixture samples (using three bulk expression datasets). Our study provides three analytical tools (corrplots, cell-signature plots and bar-mixture plots) that allow a thorough comparative analysis of the cell mixture data. The work indicates that CIBERSORT is a robust method optimized for the identification of immune cell-types, but not as efficient in the identification of cancer cells. We also found that LINSEED is a very powerful unsupervised method that provides precise and specific gene signatures for each of the main immune cell types tested: neutrophils and monocytes (of the myeloid lineage), B-cells, NK cells and T-cells (of the lymphoid lineage), and also for cancer cells.


Subject(s)
Gene Expression Profiling , Neoplasms , Gene Expression Profiling/methods , Transcriptome , Monocytes , Neutrophils , T-Lymphocytes , Neoplasms/genetics
8.
Front Cell Dev Biol ; 11: 1209136, 2023.
Article in English | MEDLINE | ID: mdl-37342233

ABSTRACT

Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.

9.
Bioinform Adv ; 3(1): vbad037, 2023.
Article in English | MEDLINE | ID: mdl-37096121

ABSTRACT

Motivation: Modern genomic technologies allow us to perform genome-wide analysis to find gene markers associated with the risk and survival in cancer patients. Accurate risk prediction and patient stratification based on robust gene signatures is a key path forward in personalized treatment and precision medicine. Several authors have proposed the identification of gene signatures to assign risk in patients with breast cancer (BRCA), and some of these signatures have been implemented within commercial platforms in the clinic, such as Oncotype and Prosigna. However, these platforms are black boxes in which the influence of selected genes as survival markers is unclear and where the risk scores provided cannot be clearly related to the standard clinicopathological tumor markers obtained by immunohistochemistry (IHC), which guide clinical and therapeutic decisions in breast cancer. Results: Here, we present a framework to discover a robust list of gene expression markers associated with survival that can be biologically interpreted in terms of the three main biomolecular factors (IHC clinical markers: ER, PR and HER2) that define clinical outcome in BRCA. To test and ensure the reproducibility of the results, we compiled and analyzed two independent datasets with a large number of tumor samples (1024 and 879) that include full genome-wide expression profiles and survival data. Using these two cohorts, we obtained a robust subset of gene survival markers that correlate well with the major IHC clinical markers used in breast cancer. The geneset of survival markers that we identify (which includes 34 genes) significantly improves the risk prediction provided by the genesets included in the commercial platforms: Oncotype (16 genes) and Prosigna (50 genes, i.e. PAM50). Furthermore, some of the genes identified have recently been proposed in the literature as new prognostic markers and may deserve more attention in current clinical trials to improve breast cancer risk prediction. Availability and implementation: All data integrated and analyzed in this research will be available on GitHub (https://github.com/jdelasrivas-lab/breastcancersurvsign), including the R scripts and protocols used for the analyses. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

10.
Cancers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36765855

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Studies of CLL antibody reactivity have shown differential targets to autoantigens and antimicrobial molecular motifs that support the current hypothesis of CLL pathogenesis. METHODS: In this study, we conducted a quantitative serum analysis of 7 immunoglobulins in CLL and monoclonal B-cell lymphocytosis (MBL) patients (bead-suspension protein arrays) and a serological profile (IgG and IgM) study of autoantibodies and antimicrobial antigens (protein microarrays). RESULTS: Significant differences in the IgA levels were observed according to disease progression and evolution as well as significant alterations in IgG1 according to IGHV mutational status. More representative IgG autoantibodies in the cohort were against nonmutagenic proteins and IgM autoantibodies were against vesicle proteins. Antimicrobial IgG and IgM were detected against microbes associated with respiratory tract infections. CONCLUSIONS: Quantitative differences in immunoglobulin serum levels could be potential biomarkers for disease progression. In the top 5 tumoral antigens, we detected autoantibodies (IgM and IgG) against proteins related to cell homeostasis and metabolism in the studied cohort. The top 5 microbial antigens were associated with respiratory and gastrointestinal infections; moreover, the subsets with better prognostics were characterized by a reactivation of Cytomegalovirus. The viral humoral response could be a potential prognosis biomarker for disease progression.

11.
J Proteome Res ; 22(4): 1105-1115, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36475733

ABSTRACT

Rheumatic diseases are high prevalence pathologies with different etiology and evolution and low sensitivity in clinical diagnosis. Therefore, it is necessary to develop an early diagnosis method which allows personalized treatment, depending on the specific pathology. The biology/disease initiative, at Human Proteome Project, is an integrative approach to identify relevant proteins in the human proteome associated with pathologies. A previously reported literature data mining analysis, which identified proteins related to osteoarthritis (OA), rheumatoid arthritis (RA), and psoriatic arthritis (PSA) was used to establish a systematic prioritization of potential biomarkers candidates for further evaluation by functional proteomics studies. The aim was to study the protein profile of serum samples from patients with rheumatic diseases such as OA, RA, and PSA. To achieve this goal, customized antibody microarrays (containing 151 antibodies targeting 121 specific proteins) were used to identify biomarkers related to early and specific diagnosis in a screening of 960 serum samples (nondepleted) (OA, n = 480; RA, n = 192; PSA, n = 288). This functional proteomics screening has allowed the determination of a panel (30 serum proteins) as potential biomarkers for these rheumatic diseases, displaying receiver operating characteristics curves with area under the curve values of 80-90%.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , Osteoarthritis , Rheumatic Diseases , Humans , Proteome , Arthritis, Rheumatoid/metabolism , Osteoarthritis/diagnosis , Rheumatic Diseases/diagnosis , Biomarkers , Arthritis, Psoriatic/diagnosis
12.
Front Immunol ; 13: 965905, 2022.
Article in English | MEDLINE | ID: mdl-36248816

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a lymphoid neoplasm characterized by the accumulation of mature B cells. The diagnosis is established by the detection of monoclonal B lymphocytes in peripheral blood, even in early stages [monoclonal B-cell lymphocytosis (MBLhi)], and its clinical course is highly heterogeneous. In fact, there are well-characterized multiple prognostic factors that are also related to the observed genetic heterogenicity, such as immunoglobulin heavy chain variable region (IGHV) mutational status, del17p, and TP53 mutations, among others. Moreover, a dysregulation of the immune system (innate and adaptive immunity) has been observed in CLL patients, with strong impact on immune surveillance and consequently on the onset, evolution, and therapy response. In addition, the tumor microenvironment is highly complex and heterogeneous (i.e., matrix, fibroblast, endothelial cells, and immune cells), playing a critical role in the evolution of CLL. In this study, a quantitative profile of 103 proteins (cytokines, chemokines, growth/regulatory factors, immune checkpoints, and soluble receptors) in 67 serum samples (57 CLL and 10 MBLhi) has been systematically evaluated. Also, differential profiles of soluble immune factors that discriminate between MBLhi and CLL (sCD47, sCD27, sTIMD-4, sIL-2R, and sULBP-1), disease progression (sCD48, sCD27, sArginase-1, sLAG-3, IL-4, and sIL-2R), or among profiles correlated with other prognostic factors, such as IGHV mutational status (CXCL11/I-TAC, CXCL10/IP-10, sHEVM, and sLAG-3), were deciphered. These results pave the way to explore the role of soluble immune checkpoints as a promising source of biomarkers in CLL, to provide novel insights into the immune suppression process and/or dysfunction, mostly on T cells, in combination with cellular balance disruption and microenvironment polarization leading to tumor escape.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Biomarkers , Chemokine CXCL10 , Endothelial Cells/pathology , Humans , Immunoglobulin Heavy Chains/genetics , Immunologic Factors , Interleukin-4 , Tumor Microenvironment
13.
Comput Struct Biotechnol J ; 20: 3764-3778, 2022.
Article in English | MEDLINE | ID: mdl-35891788

ABSTRACT

Protein-protein interactions (PPI) play an essential role in the biological processes that occur in the cell. Therefore, the dissection of PPI networks becomes decisive to model functional coordination and predict pathological de-regulation. Cellular networks are dynamic and proteins display varying roles depending on the tissue-interactomic context. Thus, the use of centrality measures in individual proteins fall short to dissect the functional properties of the cell. For this reason, there is a need for more comprehensive, relational, and context-specific ways to analyze the multiple actions of proteins in different cells and identify specific functional assemblies within global biomolecular networks. Under this framework, we define Biological Interacting units (BioInt-U) as groups of proteins that interact physically and are enriched in a common Gene Ontology. A search strategy was applied on 33 tissue-specific (TS) PPI networks to generate BioInt libraries associated with each particular human tissue. The cross-tissue comparison showed that housekeeping assemblies incorporate different proteins and exhibit distinct network properties depending on the tissue. Furthermore, disease genes (DGs) of tissue-associated pathologies preferentially accumulate in units in the expected tissues, which in turn were more central in the TS networks. Overall, the study reveals a tissue-specific functional diversification based on the identification of specific protein units and suggests vulnerabilities specific of each tissue network, which can be applied to refine protein-disease association methods.

15.
Cancer Res ; 82(6): 1098-1109, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35131871

ABSTRACT

Preventing development of childhood B-cell acute lymphoblastic leukemia (B-ALL), a disease with devastating effects, is a longstanding and unsolved challenge. Heterozygous germline alterations in the PAX5 gene can lead to B-ALL upon accumulation of secondary mutations affecting the JAK/STAT signaling pathway. Preclinical studies have shown that this malignant transformation occurs only under immune stress such as exposure to infectious pathogens. Here we show in Pax5+/- mice that transient, early-life administration of clinically relevant doses of ruxolitinib, a JAK1/2 inhibitor, significantly mitigates the risk of B-ALL following exposure to infection; 1 of 29 animals treated with ruxolitinib developed B-ALL versus 8 of 34 untreated mice. Ruxolitinib treatment preferentially targeted Pax5+/- versus wild-type B-cell progenitors and exerted unique effects on the Pax5+/- B-cell progenitor transcriptional program. These findings provide the first in vivo evidence for a potential strategy to prevent B-ALL development. SIGNIFICANCE: JAK/STAT inhibition suppresses tumorigenesis in a B-ALL-susceptible mouse model, presenting a novel approach to prevent B-ALL onset.


Subject(s)
Janus Kinases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Humans , Janus Kinases/genetics , Mice , PAX5 Transcription Factor/genetics , STAT Transcription Factors , Signal Transduction/genetics
16.
Ther Adv Hematol ; 13: 20406207221142137, 2022.
Article in English | MEDLINE | ID: mdl-36601635

ABSTRACT

Background: Eltrombopag (EP) is a small molecule that acts directly on hematopoietic stem cells (HSCs) and megakaryocytes to stimulate the hematopoietic process. Mesenchymal stem/stromal cells (MSCs) are key hematopoietic niche regulators. Objectives: We aimed to determine whether EP has any effect on MSC function and properties (especially on their hematopoietic-supporting ability) and if so, what changes (e.g. genome-wide transcriptomic alterations) are induced in MSC after EP treatment. Design/Methods: MSCs were isolated from 12 healthy donors and treated with 15 µM and 50 µM of EP for 24 h. The toxicity of the drug on MSCs and their differentiation ability were analyzed, as well as the transcriptomic profile, reactive oxygen species (ROS) and DNA damage and the changes induced in the clonogenic capacity of HSCs. Results: The results show that EP also modifies MSC functions, decreasing their adipogenic differentiation, increasing the expression of genes involved in hypoxia and other pathways related to oxygen homeostasis, and enhancing their ability to support hematopoiesis in vitro. Conclusion: Our findings support the use of EP in cases where hematopoiesis is defective, despite its well-known direct effects on hematopoietic cells. Our findings suggest that further studies on the effects of EP on MSCs from patients with aplastic anemia are warranted.

17.
Biomolecules ; 11(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34944421

ABSTRACT

Human Proteome Project (HPP) presents a systematic characterization of the protein landscape under different conditions using several complementary-omic techniques (LC-MS/MS proteomics, affinity proteomics, transcriptomics, etc.). In the present study, using a B-cell lymphoma cell line as a model, comprehensive integration of RNA-Seq transcriptomics, MS/MS, and antibody-based affinity proteomics (combined with size-exclusion chromatography) (SEC-MAP) were performed to uncover correlations that could provide insights into protein dynamics at the intracellular level. Here, 5672 unique proteins were systematically identified by MS/MS analysis and subcellular protein extraction strategies (neXtProt release 2020-21, MS/MS data are available via ProteomeXchange with identifier PXD003939). Moreover, RNA deep sequencing analysis of this lymphoma B-cell line identified 19,518 expressed genes and 5707 protein coding genes (mapped to neXtProt). Among these data sets, 162 relevant proteins (targeted by 206 antibodies) were systematically analyzed by the SEC-MAP approach, providing information about PTMs, isoforms, protein complexes, and subcellular localization. Finally, a bioinformatic pipeline has been designed and developed for orthogonal integration of these high-content proteomics and transcriptomics datasets, which might be useful for comprehensive and global characterization of intracellular protein profiles.


Subject(s)
Gene Expression Profiling/methods , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Proteomics/methods , Cell Line, Tumor , Chromatography, Gel , Chromatography, Liquid , Databases, Genetic , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Protein Array Analysis , Sequence Analysis, RNA , Signal Transduction , Tandem Mass Spectrometry
18.
Drug Resist Updat ; 59: 100787, 2021 12.
Article in English | MEDLINE | ID: mdl-34840068

ABSTRACT

Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.


Subject(s)
Immunotherapy , Neoplasms , Humans , Hypoxia , Neoplasms/pathology , Tumor Microenvironment
19.
Cancers (Basel) ; 13(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34638304

ABSTRACT

Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients' compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...