Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38922125

ABSTRACT

Photocatalysis, a promising solution to environmental challenges, relies on the generation and utilization of photogenerated charge carriers within photocatalysts. However, the recombination of these carriers often limits efficiency. Heterostructures, especially Cu2O/TiO2, have emerged as effective solutions to enhance charge separation. This study systematically explores the effect of interfacial morphologies on the band bending within Cu2O/TiO2 anatase heterostructures by employing density functional theory. Through this study, eight distinct interfaces are identified and analyzed, revealing a consistent staggered-type band alignment. Despite variations in band edge positions, systematic charge transfer from Cu2O to TiO2 is observed across all interfaces. The proposed band bending configurations would suggest enhanced charge separation and photocatalytic activity under ultraviolet illumination due to a Z-scheme configuration. This theoretical investigation provides valuable insights into the interplay between interfacial morphology, band bending, and charge transfer for advancing the understanding of fundamental electronic mechanisms in heterostructures.

2.
J Chem Phys ; 160(15)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38634493

ABSTRACT

The orthorhombic phase of FeNbO4, a promising anode material for solid oxide fuel cells (SOFCs), exhibits good catalytic activity toward hydrogen oxidation. However, the low electronic conductivity of the material specifically in the pure structure without defects or dopants limits its practical applications as an SOFC anode. In this study, we have employed density functional theory (DFT + U) calculations to explore the bulk and electronic properties of two types of doped structures, Fe0.9375A0.0625NbO4 and FeNb0.9375B0.0625O4 (A, B = Ti, V, Cr, Mn, Co, Ni) and the oxygen-deficient structures Fe0.9375A0.0625NbO3.9375 and FeNb0.9375B0.0625O3.9375, where the dopant is positioned in the first nearest neighbor site to the oxygen vacancy. Our DFT simulations have revealed that doping in the Fe sites is energetically favorable compared to doping in the Nb site, resulting in significant volume expansion. The doping process generally requires less energy when the O-vacancy is surrounded by one Fe and two Nb ions. The simulated projected density of states of the oxygen-deficient structures indicates that doping in the Fe site, particularly with Ti and V, considerably narrows the bandgap to ∼0.5 eV, whereas doping with Co at the Nb sites generates acceptor levels close to 0 eV. Both doping schemes, therefore, enhance electron conduction during SOFC operation.

3.
Small ; : e2400885, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616736

ABSTRACT

The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high-quality pure-blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing-driven ligand exchange process to produce high-quality QDs is developed. The strongly-confined pure-blue (≈470 nm) CsPbBr3 QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br-rich ion environment based on growth thermodynamic control. Subsequent polishing-driven ligand exchange process removes imperfect surface sites and replaces initial long-chain organic ligands with short-chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near-unity. The resulting PeLEDs exhibit a pure-blue electroluminescence (EL) emission at 472 nm with narrow full-width at half-maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m-2. The pure-blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll-off of EQE, and an operational half-lifetime (T50) of 127 min at an initial luminance of 103 cd m-2 under continuous operation.

4.
Langmuir ; 40(13): 6884-6897, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38517367

ABSTRACT

CdS, characterized by its comparatively narrow energy band gap (∼2.4 eV), is an appropriate material for prospective use as a photoanode in photoelectrochemical water splitting. Regrettably, it encounters several obstacles for practical and large-scale applications, including issues such as bulk carrier recombination and diminished conductivity. Here, we have tried to address these challenges by fabricating a novel photoelectrode (ZnO/CdS) composed of one-dimensional ZnO nanorods (NRs) decorated with two-dimensional CdS nanosheets (NSs). A facile two-step chemical method comprising electrodeposition along with chemical bath deposition is employed to synthesize the ZnO NRs, CdS NSs, and ZnO/CdS nanostructures. The prepared nanostructures have been investigated by UV-visible absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. The fabricated ZnO/CdS nanostructures have shown enhanced photoelectrochemical properties due to the improvement of the semiconductor junction surface area and thereby enhanced visible light absorption. The incorporation of CdS NSs has been further found to promote the rate of the charge separation and transfer process. Subsequently, the fabricated ZnO/CdS photoelectrodes achieved a photocurrent conversion efficiency 3 times higher than that of a planar ZnO NR photoanode and showed excellent performance under visible light irradiation. The highest applied bias photon-to-current conversion efficiency (% ABPE) of about ∼0.63% has been obtained for the sample with thicker CdS NSs on ZnO NRs with a photocurrent density of ∼1.87 mA/cm2 under AM 1.5 G illumination. The newly synthesized nanostructures further demonstrate that the full photovoltaic capacity of nanomaterials is yet to be exhausted.

5.
J Phys Chem C Nanomater Interfaces ; 127(38): 18944-18961, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37791103

ABSTRACT

Photocatalysis has gained significant attention and interest as an environmentally friendly and sustainable approach to the production of hydrogen through water splitting and the reduction and conversion of CO2. Copper tungstate (CuWO4) is a highly promising candidate for these applications owing to its appropriate bandgap and superior stability under different conditions. However, the redox behavior of the CuWO4 surfaces under different environments and their impact on the morphology of the material nanoparticles, as well as the electronic properties, remain poorly understood. In this study, we have employed density functional theory calculations to investigate the properties of the bulk and pristine surfaces of CuWO4 and how the latter are impacted by oxygen chemisorption under the conditions required for photocatalytic water splitting and carbon dioxide reduction processes. We have calculated the lattice parameters and electronic properties of the bulk phase, as well as the surface energies of all possible nonpolar, stoichiometric, and symmetric terminations of the seven low-Miller index surfaces and found that the (010) and (110) facets are the thermodynamically most stable. The surface-phase diagrams were used to derive the equilibrium crystal morphologies, which show that the pristine (010) surface is prominent under synthesis and room conditions. Our crystal morphologies suggest that the partially oxidized (110) surface and the partially reduced (011) surface may play an important role in the photocatalytic splitting of water and CO2 conversion, respectively. Our results provide a comprehensive understanding of the CuWO4 surfaces under the conditions of important photocatalytic applications.

6.
Molecules ; 28(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37764301

ABSTRACT

The increasing demand for clean fuels and sustainable products has attracted much interest in the development of active and selective catalysts for CO conversion to desirable products. This review maps the theoretical progress of the different facets of most commercial catalysts, including Co, Fe, Ni, Rh, and Ru. All relevant elementary steps involving CO dissociation and hydrogenation and their dependence on surface structure, surface coverage, temperature, and pressure are considered. The dominant Fischer-Tropsch synthesis mechanism is also explored, including the sensitivity to the structure of H-assisted CO dissociation and direct CO dissociation. Low-coordinated step sites are shown to enhance catalytic activity and suppress methane formation. The hydrogen adsorption and CO dissociation mechanisms are highly dependent on the surface coverage, in which hydrogen adsorption increases, and the CO insertion mechanism becomes more favorable at high coverages. It is revealed that the chain-growth probability and product selectivity are affected by the type of catalyst and its structure as well as the applied temperature and pressure.

7.
ACS Appl Mater Interfaces ; 15(22): 27340-27356, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37233739

ABSTRACT

Batteries play a critical role in achieving zero-emission goals and in the transition toward a more circular economy. Ensuring battery safety is a top priority for manufacturers and consumers alike, and hence is an active topic of research. Metal-oxide nanostructures have unique properties that make them highly promising for gas sensing in battery safety applications. In this study, we investigate the gas-sensing capabilities of semiconducting metal oxides for detecting vapors produced by common battery components, such as solvents, salts, or their degassing products. Our main objective is to develop sensors capable of early detection of common vapors produced by malfunctioning batteries to prevent explosions and further safety hazards. Typical electrolyte components and degassing products for the Li-ion, Li-S, or solid-state batteries that were investigated in this study include 1,3-dioxololane (C3H6O2─DOL), 1,2-dimethoxyethane (C4H10O2─DME), ethylene carbonate (C3H4O3─EC), dimethyl carbonate (C4H10O2─DMC), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium nitrate (LiNO3) salts in a mixture of DOL and DME, lithium hexafluorophosphate (LiPF6), nitrogen dioxide (NO2), and phosphorous pentafluoride (PF5). Our sensing platform was based on ternary and binary heterostructures consisting of TiO2(111)/CuO(1̅11)/Cu2O(111) and CuO(1̅11)/Cu2O(111), respectively, with various CuO layer thicknesses (10, 30, and 50 nm). We have analyzed these structures using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. We found that the sensors reliably detected DME C4H10O2 vapors up to a concentration of 1000 ppm with a gas response of 136%, and concentrations as low as 1, 5, and 10 ppm with response values of approximately 7, 23, and 30%, respectively. Our devices can serve as 2-in-1 sensors, functioning as a temperature sensor at low operating temperatures and as a gas sensor at temperatures above 200 °C. Density functional theory calculations were also employed to study the adsorption of the vapors produced by battery solvents or their degassing products, as well as water, to investigate the impact of humidity. PF5 and C4H10O2 showed the most exothermic molecular interactions, which are consistent with our gas response investigations. Our results indicate that humidity does not impact the performance of the sensors, which is crucial for the early detection of thermal runaway under harsh conditions in Li-ion batteries. We show that our semiconducting metal-oxide sensors can detect the vapors produced by battery solvents and degassing products with high accuracy and can serve as high-performance battery safety sensors to prevent explosions in malfunctioning Li-ion batteries. Despite the fact that the sensors work independently of the type of battery, the work presented here is of particular interest for the monitoring of solid-state batteries, since DOL is a solvent typically used in this type of batteries.

9.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986012

ABSTRACT

Many areas of electronics, engineering and manufacturing rely on ferromagnetic materials, including iron, nickel and cobalt. Very few other materials have an innate magnetic moment rather than induced magnetic properties, which are more common. However, in a previous study of ruthenium nanoparticles, the smallest nano-dots showed significant magnetic moments. Furthermore, ruthenium nanoparticles with a face-centred cubic (fcc) packing structure exhibit high catalytic activity towards several reactions and such catalysts are of special interest for the electrocatalytic production of hydrogen. Previous calculations have shown that the energy per atom resembles that of the bulk energy per atom when the surface-to-bulk ratio < 1, but in its smallest form, nano-dots exhibit a range of other properties. Therefore, in this study, we have carried out calculations based on the density functional theory (DFT) with long-range dispersion corrections DFT-D3 and DFT-D3-(BJ) to systematically investigate the magnetic moments of two different morphologies and various sizes of Ru nano-dots in the fcc phase. To confirm the results obtained by the plane-wave DFT methodologies, additional atom-centred DFT calculations were carried out on the smallest nano-dots to establish accurate spin-splitting energetics. Surprisingly, we found that in most cases, the high spin electronic structures had the most favourable energies and were hence the most stable.

10.
Phys Chem Chem Phys ; 25(9): 6797-6807, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36789958

ABSTRACT

ABO4-type materials have shown significant potential for applications as luminescence and photocatalytic materials, and the orthorhombic FeNbO4 (o-FeNbO4) material has also shown excellent promise in catalytic electrodes, unlike other common ABO4 materials. However, little computational work has been carried out on the o-FeNbO4 structure, potentially because it is disordered and thus not straightforward to simulate. In this work, we first confirmed the accuracy of the force field parameters obtained from previous studies through optimizations carried out using the GULP code. Next, we found that one ordered configuration of the stoichiometric o-FeNbO4 structure dominates when analysing the probabilities of cation disorder in three supercells (2 × 2 × 1, 2 × 1 × 2, and 1 × 2 × 2). We then studied the bulk properties of this selected o-FeNbO4 through DFT calculations, including the lattice parameters, the mechanical properties and the electronic structures, where no remarkable differences were observed compared to the monoclinic FeNbO4 structure. Finally, because oxygen mobility is key to the successful application of o-FeNbO4 as an electrode material, we have simulated the diffusion pathways of oxygen through both the stoichiometric and non-stoichiometric structures, where the results show that the existence of oxygen vacancies enhances diffusion and the distribution of the Fe and Nb inside the lattice affects the energy barriers and could therefore impact the oxygen diffusion.

11.
Molecules ; 28(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36677718

ABSTRACT

The imino pyridine Schiff base cobalt(II) and nickel(II) complexes (C1 and C2) and their functionalised γ-Fe3O4 counterparts (Fe3O4@C1 and Fe3O4@C2) were synthesised and characterised using IR, elemental analysis, and ESI-MS for C1 and C2, and single crystal X-ray diffraction for C1, while the functionalised materials Fe3O4@C1 and Fe3O4@C2 were characterized using IR, XRD, SEM, TEM, EDS, ICP-OES, XPS and TGA. Complexes C1, C2 and the functionalised materials Fe3O4@C1 and Fe3O4@C2 were tested as catalysts for the selective transfer hydrogenation of cinnamaldehyde and all four pre-catalysts showed excellent catalytic activity. Complexes C1 and C2 acted as homogeneous catalysts with high selectivity towards the formation of hydrocinnamaldehyde (88.7% and 92.6%, respectively) while Fe3O4@C1 and Fe3O4@C2 acted as heterogeneous catalysts with high selectivity towards cinnamyl alcohol (89.7% and 87.7%, respectively). Through in silico studies of the adsorption energies, we were able to account for the different products formed using the homogeneous and the heterogeneous catalysts which we attribute to the preferred interaction of the C=C moiety in the substrate with the Ni centre in C2 (-0.79 eV) rather than the C=O (-0.58 eV).

12.
Molecules ; 28(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36615572

ABSTRACT

Density functional theory calculations have been performed to study the effect of replacing lead by alkaline earth metals on the stability, electronic and optical properties of the formamidinium lead triiodide (FAPbI3) (111) and (100) surfaces with different terminations in the form of FAPb1-xAExI3 structures, where AE is Be, Mg or Ca. It is revealed that the (111) surface is more stable, indicating metallic characteristics. The (100) surfaces exhibit a suitable bandgap of around 1.309 and 1.623 eV for PbI5 and PbI6 terminations, respectively. Increases in the bandgaps as a result of Mg- and Ca-doping of the (100) surface were particularly noted in FAPb0.96Ca0.04I3 and FAPb0.8Ca0.2I3 with bandgaps of 1.459 and 1.468 eV, respectively. In the presence of Be, the band gap reduces critically by about 0.315 eV in the FAPb0.95Be0.05I3 structure, while increasing by 0.096 eV in FAPb0.96Be0.04I3. Optimal absorption, high extinction coefficient and light harvesting efficiency were achieved for plain and doped (100) surfaces in the visible and near UV regions. In order to improve the optical properties of the (111)-PbI3 surface in initial visible areas, we suggest calcium-doping in this surface to produce FAPb0.96Ca0.04I3, FAPb0.92Ca0.08I3, and FAPb0.88Ca0.12I3 structures.

13.
Phys Chem Chem Phys ; 25(3): 2498-2509, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36602090

ABSTRACT

Carbon dioxide (CO2) hydrogenation is an energetic process which could be made more efficient through the use of effective catalysts, for example transition metal carbides. Here, we have employed calculations based on the density functional theory (DFT) to evaluate the reaction processes of CO2 hydrogenation to methane (CH4), carbon monoxide (CO), methanol (CH3OH), formaldehyde (CH2O), and formic acid (HCOOH) over the carbon-terminated niobium carbide (111) surface. First, we have studied the adsorption geometries and energies of 25 different surface-adsorbed species, followed by calculations of all of the elementary steps in the CO2 hydrogenation process. The theoretical findings indicate that the NbC (111) surface has higher catalytic activity towards CO2 methanation, releasing 4.902 eV in energy. CO represents the second-most preferred product, followed by CH3OH, CH2O, and HCOOH, all of which have exothermic reaction energies of 4.107, 2.435, 1.090, and 0.163 eV, respectively. Except for the mechanism that goes through HCOOH to produce CH2O, all favourable hydrogenation reactions lead to desired compounds through the creation of the dihydroxycarbene (HOCOH) intermediate. Along these routes, CH3* hydrogenation to CH4* has the highest endothermic reaction energy of 3.105 eV, while CO production from HCO dehydrogenation causes the highest exothermic reaction energy of -3.049 eV. The surface-adsorbed CO2 hydrogenation intermediates have minimal effect on the electronic structure and interact only weakly with the surface. Our results are consistent with experimental observations.

14.
Angew Chem Int Ed Engl ; 62(12): e202300149, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36692366

ABSTRACT

Perovskite colloidal quantum wells (QWs) are promising to realize narrow deep-blue emission, but the poor optical performance and stability suppress their practical application. Here, we creatively propose a water-driven synthesis strategy to obtain size-homogenized and strongly confined deep-blue CsPbBr3 QWs, corresponding to three monolayers, which emit at the deep-blue wavelength of 456 nm. The water controls the orientation and distribution of the ligands on the surface of the nanocrystals, thus inducing orientated growth through the Ostwald ripening process by phagocytizing unstable nanocrystals to form well-crystallized QWs. These QWs present remarkable stability and high photoluminescence quantum yield of 94 %. Furthermore, we have prepared light-emitting diodes based on the QWs via the all-solution fabrication strategy, achieving an external quantum efficiency of 1 % and luminance of 2946 cd m-2 , demonstrating state-of-the-art brightness for perovskite QW-based LEDs.

15.
Phys Chem Chem Phys ; 25(2): 1220-1235, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36524712

ABSTRACT

In order to use classical molecular dynamics to complement experiments accurately, it is important to use robust descriptions of the system. The interactions between biomolecules, like aspartic and glutamic acid, and dissolved ions are often studied using standard biomolecular force-fields, where the interactions between biomolecules and cations are often not parameterized explicitly. In this study, we have employed metadynamics simulations to investigate different interactions of Ca with aspartic and glutamic acid and constructed the free energy profiles of Ca2+-carboxylate association. Starting from a generally accepted, AMBER-based force field, the association was substantially over and under-estimated, depending on the choice of water model (TIP3P and SPC/fw, respectively). To rectify this discrepancy, we have replaced the default calcium parameters. Additionally, we modified the σij value in the hetero-atomic Lennard-Jones interaction by 0.5% to further improve the interaction between Ca and carboxylate, based on comparison with the experimentally determined association constant for Ca with the carboxylate group of L-aspartic acid. The corrected description retrieved the structural properties of the ion pair in agreement with the original biomolecule - Ca2+ interaction in AMBER, whilst also producing an association constant comparable to experimental observations. This refined force field was then used to investigate the interactions between amino acids, calcium and carbonate ions during biogenic and biomimetic calcium carbonate mineralisation.


Subject(s)
Amino Acids , Molecular Dynamics Simulation , Amino Acids/chemistry , Calcium/chemistry , Glutamic Acid , Cations , Water/chemistry , Carboxylic Acids
16.
ACS Appl Mater Interfaces ; 14(50): 56331-56343, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36480491

ABSTRACT

Well designed and optimized epitaxial heterostructures lie at the foundation of materials development for photovoltaic, photocatalytic, and photoelectrochemistry applications. Heterostructure materials offer tunable control over charge separation and transport at the same time preventing recombination of photogenerated excitations at the interface. Thus, it is of paramount importance that a detailed understanding is developed as the basis for further optimization strategies and design. Oxides of copper are nontoxic, low cost, abundant materials with a straightforward and stable manufacturing process. However, in individual applications, they suffer from inefficient charge transport of photogenerated carriers. Hence, in this work, we investigate the role of the interface between epitaxially aligned CuO and Cu2O to explore the potential benefits of such an architecture for more efficient electron and hole transfer. The CuO/Cu2O heterojunction nature, stability, bonding mechanism, interface dipole, electronic structure, and band bending were rationalized using hybrid density functional theory calculations. New electronic states are identified at the interface itself, which are originating neither from lattice mismatch nor strained Cu-O bonds. They form as a result of a change in coordination environment of CuO surface Cu2+ cations and an electron transfer across the interface Cu1+-O bond. The first process creates occupied defect-like electronic states above the valence band, while the second leaves hole states below the conduction band. These are constitutional to the interface and are highly likely to contribute to recombination effects competing with the improved charged separation from the suitable band bending and alignment and thus would limit the expected output photocurrent and photovoltage. Finally, a favorable effect of interstitial oxygen defects has been shown to allow for band gap tunability at the interface but only to the point of the integral geometrical contact limit of the heterostructure itself.

17.
Phys Chem Chem Phys ; 24(34): 20104-20124, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35983830

ABSTRACT

Greigite (Fe3S4), with its ferredoxin-like 4Fe-4S redox centres, is a naturally occurring mineral capable of acting as a catalyst in the conversion of carbon dioxide (CO2) into low molecular-weight organic acids (LMWOAs), which are of paramount significance in several soil and plant processes as well as in the chemical industry. In this paper, we report the reaction between CO2 and water (H2O) to form oxalic acid (H2C2O4) on the partially oxidised greigite Fe3S4(001) surface by means of spin-polarised density functional theory calculations with on-site Coulomb corrections and long-range dispersion interactions (DFT+U-D2). We have calculated the bulk phase of Fe3S4 and the two reconstructed Tasker type 3 terminations of its (001) surface, whose properties are in good agreement with available experimental data. We have obtained the relevant phase diagram, showing that the Fe3S4(001) surface becomes 62.5% partially oxidised, by replacing S by O atoms, in the presence of water at the typical conditions of calcination [Mitchell et al. Faraday Discuss. 2021, 230, 30-51]. The adsorption and co-adsorption of the reactants on the partially oxidised Fe3S4(001) surface are exothermic processes. We have considered three mechanistic pathways to explain the formation of H2C2O4, showing that the coupling of the C-C bond and second protonation are the elementary steps with the largest energy penalty. Our calculations suggest that the partially oxidised Fe3S4(001) surface is a mineral phase that can catalyse the formation of H2C2O4 under favourable conditions, which has important implications for natural ecosystems and is a process that can be harnessed for the industrial manufacture of this organic acid.


Subject(s)
Carbon Dioxide , Oxalic Acid , Catalysis , Ecosystem , Iron , Sulfides/chemistry , Water
18.
ACS Appl Mater Interfaces ; 14(36): 41196-41207, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36044354

ABSTRACT

Fast detection of hydrogen gas leakage or its release in different environments, especially in large electric vehicle batteries, is a major challenge for sensing applications. In this study, the morphological, structural, chemical, optical, and electronic characterizations of ZnO:Eu nanowire arrays are reported and discussed in detail. In particular, the influence of different Eu concentrations during electrochemical deposition was investigated together with the sensing properties and mechanism. Surprisingly, by using only 10 µM Eu ions during deposition, the value of the gas response increased by a factor of nearly 130 compared to an undoped ZnO nanowire and we found an H2 gas response of ∼7860 for a single ZnO:Eu nanowire device. Further, the synthesized nanowire sensors were tested with ultraviolet (UV) light and a range of test gases, showing a UV responsiveness of ∼12.8 and a good selectivity to 100 ppm H2 gas. A dual-mode nanosensor is shown to detect UV/H2 gas simultaneously for selective detection of H2 during UV irradiation and its effect on the sensing mechanism. The nanowire sensing approach here demonstrates the feasibility of using such small devices to detect hydrogen leaks in harsh, small-scale environments, for example, stacked battery packs in mobile applications. In addition, the results obtained are supported through density functional theory-based simulations, which highlight the importance of rare earth nanoparticles on the oxide surface for improved sensitivity and selectivity of gas sensors, even at room temperature, thereby allowing, for instance, lower power consumption and denser deployment.

19.
ACS Appl Mater Interfaces ; 14(25): 29331-29344, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35704838

ABSTRACT

Monitoring volatile organic compounds (VOCs) in harsh environments, especially for safety applications, is a growing field that requires specialized sensor structures. In this work, we demonstrate the sensing properties toward the most common VOCs of columnar Al2O3/ZnO heterolayer-based sensors. We have also developed an approach to tune the sensor selectivity by changing the thickness of the exposed amorphous Al2O3 layer from 5 to 18 nm. Columnar ZnO films are prepared by a chemical solution method, where the exposed surface is decorated with an Al2O3 nanolayer via thermal atomic layer deposition at 75 °C. We have investigated the structure and morphology as well as the vibrational, chemical, electronic, and sensor properties of the Al2O3/ZnO heterostructures. Transmission electron microscopy (TEM) studies show that the upper layers consist of amorphous Al2O3 films. The heterostructures showed selectivity to 2-propanol vapors only within the range of 12-15 nm thicknesses of Al2O3, with the highest response value of ∼2000% reported for a thickness of 15 nm at the optimal working temperature of 350 °C. Density functional theory (DFT) calculations of the Al2O3/ZnO(1010) interface and its interaction with 2-propanol (2-C3H7OH), n-butanol (n-C4H9OH), ethanol (C2H5OH), acetone (CH3COCH3), hydrogen (H2), and ammonia (NH3) show that the molecular affinity for the Al2O3/ZnO(1010) interface decreases from 2-propanol (2-C3H7OH) ≈ n-butanol (n-C4H9OH) > ethanol (C2H5OH) > acetone (CH3COCH3) > hydrogen (H2), which is consistent with our gas response experiments for the VOCs. Charge transfers between the surface and the adsorbates, and local densities of states of the interacting atoms, support the calculated strength of the molecular preferences. Our findings are highly important for the development of 2-propanol sensors and to our understanding of the effect of the heterojunction and the thickness of the top nanolayer on the gas response, which thus far have not been reported in the literature.

20.
Front Chem ; 10: 835832, 2022.
Article in English | MEDLINE | ID: mdl-35494625

ABSTRACT

Metal sulphides, including zinc sulphide (ZnS), are semiconductor photocatalysts that have been investigated for the photocatalytic degradation of organic pollutants as well as their activity during the hydrogen evolution reaction and water splitting. However, devising ZnS photocatalysts with a high overall quantum efficiency has been a challenge due to the rapid recombination rates of charge carriers. Various strategies, including the control of size and morphology of ZnS nanoparticles, have been proposed to overcome these drawbacks. In this work, ZnS samples with different morphologies were prepared from zinc and sulphur powders via a facile hydrothermal method by varying the amount of sodium borohydride used as a reducing agent. The structural properties of the ZnS nanoparticles were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques. All-electron hybrid density functional theory calculations were employed to elucidate the effect of sulphur and zinc vacancies occurring in the bulk as well as (220) surface on the overall electronic properties and absorption of ZnS. Considerable differences in the defect level positions were observed between the bulk and surface of ZnS while the adsorption of NaBH4 was found to be highly favourable but without any significant effect on the band gap of ZnS. The photocatalytic activity of ZnS was evaluated for the degradation of rhodamine B dye under UV irradiation and hydrogen generation from water. The ZnS nanoparticles photo-catalytically degraded Rhodamine B dye effectively, with the sample containing 0.01 mol NaBH4 being the most efficient. The samples also showed activity for hydrogen evolution, but with less H2 produced compared to when untreated samples of ZnS were used. These findings suggest that ZnS nanoparticles are effective photocatalysts for the degradation of rhodamine B dyes as well as the hydrogen evolution, but rapid recombination of charge carriers remains a factor that needs future optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...