Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(2): 027401, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28753330

ABSTRACT

The dipole coupling strength g between cavity photons and quantum well excitons determines the regime of light matter coupling in quantum well microcavities. In the strong coupling regime, a reversible energy transfer between exciton and cavity photon takes place, which leads to the formation of hybrid polaritonic resonances. If the coupling is further increased, a hybridization of different single exciton states emerges, which is referred to as the very strong coupling regime. In semiconductor quantum wells such a regime is predicted to manifest as a photon-mediated electron-hole coupling leading to different excitonic wave functions for the two polaritonic branches when the ratio of the coupling strength to exciton binding energy g/E_{B} approaches unity. Here, we verify experimentally the existence of this regime in magneto-optical measurements on a microcavity characterized by g/E_{B}≈0.64, showing that the average electron-hole separation of the upper polariton is significantly increased compared to the bare quantum well exciton Bohr radius. This yields a diamagnetic shift around 0 detuning that exceeds the shift of the lower polariton by 1 order of magnitude and the bare quantum well exciton diamagnetic shift by a factor of 2. The lower polariton exhibits a diamagnetic shift smaller than expected from the coupling of a rigid exciton to the cavity mode, which suggests more tightly bound electron-hole pairs than in the bare quantum well.

3.
Sci Rep ; 5: 16055, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26530139

ABSTRACT

The spontaneous and stimulated emission of a superconducting qubit in the presence of propagating microwaves originates from an effective light-matter interaction that, similarly to the case of the atomic case, can contain a diamagnetic term proportional to the square vector potential A(2). In the present work we prove that an increase in the strength of the diamagnetic term leads to an effective decoupling of the qubit from the electromagnetic field, and that this effect is observable at any range of qubit-photon coupling. To measure this effect we propose to use a transmon suspended over a transmission line, where the relative strength of the A(2) term is controlled by the qubit-line separation. We show that the spontaneous emission rate of the suspended transmon onto the line can, at short distances, increase with such a separation, instead of decreasing.

4.
Science ; 335(6074): 1323-6, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22422976

ABSTRACT

Artificial cavity photon resonators with ultrastrong light-matter interactions are attracting interest both in semiconductor and superconducting systems because of the possibility of manipulating the cavity quantum electrodynamic ground state with controllable physical properties. We report here experiments showing ultrastrong light-matter coupling in a terahertz (THz) metamaterial where the cyclotron transition of a high-mobility two-dimensional electron gas (2DEG) is coupled to the photonic modes of an array of electronic split-ring resonators. We observe a normalized coupling ratio, Ω/ω(c) = 0.58, between the vacuum Rabi frequency, Ω, and the cyclotron frequency, ω(c). Our system appears to be scalable in frequency and could be brought to the microwave spectral range with the potential of strongly controlling the magnetotransport properties of a high-mobility 2DEG.

5.
Phys Rev Lett ; 105(19): 196402, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21231188

ABSTRACT

The regime of ultrastrong light-matter interaction has been investigated theoretically and experimentally, using zero-dimensional electromagnetic resonators coupled with an electronic transition between two confined states of a semiconductor quantum well. We have measured a splitting between the coupled modes that amounts to 48% of the energy transition, the highest ratio ever observed in a light-matter coupled system. Our analysis, based on a microscopic quantum theory, shows that the nonlinear polariton splitting, a signature of this regime, is a dynamical effect arising from the self-interaction of the collective electronic polarization with its own emitted field.

6.
Phys Rev Lett ; 103(3): 033601, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19659277

ABSTRACT

We theoretically investigate the optical response of a one-dimensional array of strongly nonlinear optical microcavities. When the optical nonlinearity is much larger than both losses and intercavity tunnel coupling, the nonequilibrium steady state of the system is reminiscent of a strongly correlated Tonks-Girardeau gas of impenetrable bosons. Signatures of strong correlations are identified in the transmission spectrum of the system, as well as in the intensity correlations of the transmitted light. Possible experimental implementations in state-of-the-art solid-state devices are discussed.

7.
Nature ; 458(7235): 178-81, 2009 Mar 12.
Article in English | MEDLINE | ID: mdl-19279631

ABSTRACT

Controlling the way light interacts with material excitations is at the heart of cavity quantum electrodynamics (QED). In the strong-coupling regime, quantum emitters in a microresonator absorb and spontaneously re-emit a photon many times before dissipation becomes effective, giving rise to mixed light-matter eigenmodes. Recent experiments in semiconductor microcavities reached a new limit of ultrastrong coupling, where photon exchange occurs on timescales comparable to the oscillation period of light. In this limit, ultrafast modulation of the coupling strength has been suggested to lead to unconventional QED phenomena. Although sophisticated light-matter coupling has been achieved in all three spatial dimensions, control in the fourth dimension, time, is little developed. Here we use a quantum-well waveguide structure to optically tune light-matter interaction from weak to ultrastrong and turn on maximum coupling within less than one cycle of light. In this regime, a class of extremely non-adiabatic phenomena becomes observable. In particular, we directly monitor how a coherent photon population converts to cavity polaritons during abrupt switching. This system forms a promising laboratory in which to study novel sub-cycle QED effects and represents an efficient room-temperature switching device operating at unprecedented speed.

SELECTION OF CITATIONS
SEARCH DETAIL