Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559172

ABSTRACT

Since the revolutionary discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka, the comparison between iPSCs and embryonic stem cells (ESCs) has revealed significant differences in their epigenetic states and developmental potential. A recent compelling study published in Nature by Buckberry et al.1 demonstrated that a transient-naive-treatment (TNT) could facilitate epigenetic reprogramming and improve the developmental potential of human iPSCs (hiPSCs). However, the study characterized bulk hiPSCs instead of isolating clonal lines and overlooked the persistent expression of Sendai virus carrying exogenous Yamanaka factors. Our analyses revealed that Sendai genes were expressed in most control PSC samples, including hESCs, which were not intentionally infected. The highest levels of Sendai expression were detected in samples continuously treated with naive media, where it led to overexpression of exogenous MYC, SOX2, and KLF4, altering both the expression levels and ratios of reprogramming factors. Our findings call for further research to verify the effectiveness of the TNT method in the context of delivery methods that ensure prompt elimination of exogenous factors, leading to the generation of bona fide transgene-independent iPSCs.

2.
Cell Stem Cell ; 30(8): 1006-1007, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541206

ABSTRACT

Exploring the early stages of human embryonic development poses significant difficulties owing to ethical and technical limitations. Two recent studies in Nature report the self-organization of human stem cells into 3D embryoids that model features of the early post-implantation stages of human development.1,2.


Subject(s)
Embryo Implantation , Stem Cells , Pregnancy , Female , Humans , Embryonic Development , Embryo, Mammalian
3.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35858625

ABSTRACT

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Subject(s)
Chromosome Breakage , Chromosome Segregation , Aneuploidy , Animals , DNA , DNA Replication , Embryonic Development/genetics , Humans , Mammals/genetics
6.
Dev Cell ; 56(12): 1697-1699, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34157304

ABSTRACT

Totipotency refers to single cells' developmental capacity to form an entire organism. Understanding how totipotent stem cells form has implications for chimera generation. In a recent Cell study, Shen et al. (2021) report that inhibition of spliceosomes resets conventional pluripotent stem cells to a cellular state with totipotency features.


Subject(s)
Embryonic Stem Cells , Pluripotent Stem Cells , Alternative Splicing/genetics , Cell Differentiation , Totipotent Stem Cells
7.
Biol Psychiatry ; 90(6): 362-372, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34176589

ABSTRACT

A key challenge in psychiatry research is the development of high-fidelity model systems that can be experimentally manipulated to explore and test pathophysiological mechanisms of illness. In this respect, the emerging capacity to derive neural cells and circuits from human induced pluripotent stem cells (iPSCs) has generated significant excitement. This review aims to provide a critical appraisal of the potential for iPSCs in illuminating pathophysiological mechanisms in the context of other available technical approaches. We discuss the selection of iPSC phenotypes relevant to psychiatry, the information that researchers can draw on to help guide these decisions, and how researchers choose between the use of 2-dimensional cultures and the use of more complex 3-dimensional model systems. We discuss the strengths and limitations of current models and the challenges and opportunities that they present. Finally, we discuss the potential of iPSC-based model systems for clarifying the mechanisms underlying genetic risk for psychiatry and the steps that will be needed to ensure that robust and reliable conclusions can be drawn. We argue that while iPSC-based models are ideally placed to study fundamental processes occurring within and between neural cells, they are often less well suited for case-control studies, given issues relating to statistical power and the challenges in identifying which cellular phenotypes are meaningful at the level of the whole individual. Our aim is to highlight the importance of considering the hypotheses of a given study to guide decisions about which, if any, iPSC-based system is most appropriate to address it.


Subject(s)
Induced Pluripotent Stem Cells , Psychiatry , Humans , Models, Biological , Neurons , Phenotype
8.
Exp Neurol ; 330: 113333, 2020 08.
Article in English | MEDLINE | ID: mdl-32353463

ABSTRACT

Cerebral organoids are stem cell-derived, self-organizing three-dimensional cultures. Owing to the remarkable degree to which they recreate the cellular diversity observed in the human brain, they have attracted significant interest as a novel model system for research and drug development, as well as capturing the public imagination. However, many questions remain about the extent to which these cultures recapitulate neurodevelopment and the defining features of the human brain. To clarify the fidelity of human organoid models, Bhaduri and colleagues compared the molecular profile of brain organoid cells with that of primary cells from fetal brain. They observed that, whilst brain organoids broadly recapitulate the cellular profile of human brain, they lack the subtypes of cell classes seen in human brain. In addition, they showed marked expression of cellular stress markers, which could be reversed by transplanting organoid cells into neonatal mouse brain. The authors hypothesise that in vitro culture induces a cellular stress response and that it is this that impairs maturation. Thus, whilst their findings strike a note of caution in the use of organoids as a model for early human brain development, they lay a foundation for improving the accuracy of organoid models in the future.


Subject(s)
Organoids , Pluripotent Stem Cells , Benchmarking , Brain , Models, Biological
9.
Stem Cells Dev ; 29(13): 807-810, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32375565

ABSTRACT

Gastrulation is a phase in early mammalian development when the three germ layers are generated and body plan is formed. Although well studied in mice, much less is known about gastrulation in humans. Owing to the lack of access to primary human tissue for study and experimental manipulation, as well as legal and ethical constraints surrounding the use of human embryos, a dissection of the molecular and cellular mechanisms that underlie this process in humans has proven elusive. Nonhuman primates, owing to their relatedness to human species, comprise a tantalizing alternative model system for understanding human biology. Two recent studies have established novel systems to study monkey embryos for 20 days, demonstrating landmark events of early primate embryogenesis with possible relevance to human development. Most strikingly, cells grown in the dish closely resembled cells in in vivo embryos, suggesting that embryo development in a dish might actually be equivalent to that which occurs in vivo. In this piece, the author discusses the tremendous potential of these new methods to unveil insights into mechanisms that mediate primate embryo development. Moreover, repurposing the extended monkey embryo culture methods to create human-monkey embryonic chimeras would aid the development of strategies to create human organs inside livestock species. Finally, the ethical and regulatory issues that emerge from reconsideration of extending time limits for human embryo culture beyond 14 days or primitive streak formation are also briefly considered.


Subject(s)
Embryo Culture Techniques , Gastrulation , Animals , Embryo, Mammalian , Embryonic Development , Haplorhini , Mice
10.
Stem Cells Dev ; 29(17): 1142-1144, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32122280

ABSTRACT

Rare heterozygous deletions in the neurexin 1 (NRXN1) gene robustly increase an individual's risk of developing neurological and psychiatric disorders. However, the molecular bases by which different mutations result in different clinical presentations, with variable penetrance, are unknown. To better understand the molecular and cellular consequences of heterozygous NRXN1 mutations, Flaherty and colleagues studied how patient mutations influence the NRXN1 isoform repertoire and neuronal phenotypes using induced pluripotent stem (iPS) cells. Advancing from disease association to mechanistic insights, the authors provide insight into how patient mutations might impinge on neuronal function. This research highlights the value of iPS cells for elucidating otherwise elusive links between molecular and neuronal function. In addition, they provide further evidence of the importance of alternative splicing in the pathophysiology of neuropsychiatric diseases.


Subject(s)
Calcium-Binding Proteins/genetics , Induced Pluripotent Stem Cells/pathology , Mental Disorders/genetics , Mutation/genetics , Neural Cell Adhesion Molecules/genetics , Heterozygote , Humans , Neurons/pathology
11.
Exp Cell Res ; 387(1): 111747, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31778671

ABSTRACT

Pluripotency refers to the potential of single cells to form all cells and tissues of an organism. The observation that pluripotent stem cells can chimerize the embryos of evolutionarily distant species, albeit at very low efficiencies, could with further modifications, facilitate the production of human-animal interspecies chimeras. The generation of human-animal interspecies chimeras, if achieved, will enable practitioners to recapitulate pathologic human tissue formation in vivo and produce patient-specific organs inside livestock species. However, little is known about the nature of chimera-competent cellular states in primates. Here, I discuss recent advances in our understanding of the pluripotency continuum in humans and non-human primates (NHPs). Although undefined differences between humans and NHPs still justify the utility of studying human cells, the complementary use of NHP PS cells could also allow one to conduct pilot studies testing interspecies chimera generation strategies with reduced ethical concerns associated with human interspecies neurological chimerism. However, the availability of standardized, high-quality and validated NHP PS cell lines covering the spectrum of primate pluripotent states is lacking. Therefore, a clearer understanding of the primate pluripotency continuum will facilitate the complementary use of both human and NHP PS cells for testing interspecies organogenesis strategies, with the hope of one day enabling human organ generation inside livestock species.


Subject(s)
Chimera/physiology , Animals , Humans , Organogenesis/physiology , Pluripotent Stem Cells/physiology , Primates
12.
Curr Protoc Stem Cell Biol ; 50(1): e87, 2019 09.
Article in English | MEDLINE | ID: mdl-31184444

ABSTRACT

Pluripotency refers to the capacity of single cells to form derivatives of the three germ layers-ectoderm, mesoderm, and endoderm. Pluripotency can be captured in vitro as a spectrum of pluripotent stem cell states stabilized in specialized laboratory conditions. The recent discovery that pluripotent stem cells can colonize the embryos of distantly related animal organisms could, with further refinement, enable the generation of chimeric embryos composed of cells of human and animal origin. If achievable, the production of human-animal chimeras will open up new opportunities for regenerative medicine, facilitating human disease modeling and human organ generation inside large animals. However, the generation of human-animal interspecies chimeras is anticipated to require human chimera-competent pluripotent stem cells. Thus, it remains imperative to examine the pluripotency continuum more closely in light of advances that will facilitate the production of human-animal chimeras. This piece will review the current understanding of the pluripotency continuum and interspecies chimeras. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Chimera/physiology , Pluripotent Stem Cells/cytology , Animals , Cells, Cultured , Culture Techniques/methods , Humans
13.
Methods Mol Biol ; 2005: 3-27, 2019.
Article in English | MEDLINE | ID: mdl-31175642

ABSTRACT

Humans develop from a unique group of pluripotent cells in early embryos that can produce all cells of the human body. While pluripotency is only transiently manifest in the embryo, scientists have identified conditions that sustain pluripotency indefinitely in the laboratory. Pluripotency is not a monolithic entity, however, but rather comprises a spectrum of different cellular states. Questions regarding the scientific value of examining the continuum of pluripotent stem (PS) cell states have gained increased significance in light of attempts to generate interspecies chimeras between humans and animals. In this chapter, I review our ever-evolving understanding of the continuum of pluripotency. Historically, the discovery of two different PS cell states in mice fostered a general conception of pluripotency comprised of two distinct attractor states: naïve and primed. Naïve pluripotency has been defined by competence to form germline chimeras and governance by unique KLF-based transcription factor (TF) circuitry, whereas primed state is distinguished by an inability to generate chimeras and alternative TF regulation. However, the discovery of many alternative PS cell states challenges the concept of pluripotency as a binary property. Moreover, it remains unclear whether the current molecular criteria used to classify human naïve-like pluripotency also identify human chimera-competent PS cells. Therefore, I examine the pluripotency continuum more closely in light of recent advances in PS cell research and human interspecies chimera research.


Subject(s)
Embryo, Mammalian/embryology , Human Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , Chimera/metabolism , Embryo, Mammalian/cytology , Human Embryonic Stem Cells/cytology , Humans , Mice , Mouse Embryonic Stem Cells/cytology
14.
Methods Mol Biol ; 2005: 29-36, 2019.
Article in English | MEDLINE | ID: mdl-31175643

ABSTRACT

Pluripotency refers to the potential of cells to generate all cell types of the embryo proper. Pluripotency spans a spectrum of cellular states. At one polar extreme is naïve pluripotency, which is identified based on the potential to form germline chimeras. At the other polar extreme is primed pluripotency, in which pluripotent cells are primed to differentiate. Mouse naïve PS cells can be derived from preimplantation embryos. Primed epiblast stem (EpiS) cells are typically isolated from epiblasts of early postimplantation mouse embryos. In this chapter, we describe protocols for highly efficient derivation and propagation of murine naïve and primed PS cell lines in serum-free conditions from preimplantation and postimplantation embryos. We describe generation of mouse naïve PS cells using LIF and inhibitors of MEK and GSK3 kinases and of mouse primed PS cells using FGF2 and IWR1 compound which induces the stabilization of Axin proteins.


Subject(s)
Blastocyst/metabolism , Embryo Culture Techniques/methods , Germ Layers/embryology , Pluripotent Stem Cells/metabolism , Animals , Germ Layers/cytology , Mice , Pluripotent Stem Cells/cytology
15.
Methods Mol Biol ; 2005: 125-151, 2019.
Article in English | MEDLINE | ID: mdl-31175650

ABSTRACT

Human pluripotent stem (PS) cells can be isolated from preimplantation embryos or by reprogramming of somatic cells or germline progenitors. Human PS cells are considered the "holy grail" of regenerative medicine because they have the potential to form all cell types of the adult body. Because of their similarity to humans, nonhuman primate (NHP) PS cells are also important models for studying human biology and disease, as well as for developing therapeutic strategies and test bed for cell replacement therapy. This chapter describes adjusted methods for cultivation of PS cells from different primate species, including African green monkey, rhesus monkey, chimpanzee, and human. Supplementation of E8 medium and inhibitors of the Tankyrase and GSK3 kinases to various primate PS cell media reduce line-dependent predisposition for spontaneous differentiation in conventional PS cell cultures. We provide methods for basic characterization of primate PS cell lines, which include immunostaining for pluripotency markers such as OCT4 and TRA-1-60, as well as in vivo teratoma formation assay. We provide methods for generating alternative PS cells including region-selective primed PS cells, two different versions of naïve-like cells, and recently reported extended pluripotent stem (EPS) cells. These derivations are achieved by acclimation of conventional PS cells to target media, episomal reprogramming of somatic cells, or resetting conventional PS cells to a naïve-like state by overexpression of KLF2 and NANOG. We also provide methods for isolation of PS cells from human blastocysts. We describe how to generate interspecies primate-mouse chimeras at the blastocyst and postimplantation embryo stages. Systematic evaluation of the chimeric competency of human and primate PS cells will aid in efforts to overcome species barriers and achieve higher grade chimerism in postimplantation conceptuses that could enable organ-specific enrichment of human xenogeneic PS cell derivatives in large animals such as pigs and sheep.


Subject(s)
Antigens, Differentiation/metabolism , Blastocyst/metabolism , Chimera/embryology , Human Embryonic Stem Cells/metabolism , Animals , Blastocyst/cytology , Chlorocebus aethiops , Human Embryonic Stem Cells/cytology , Humans , Kruppel-Like Factor 4 , Mice , Sheep , Swine
16.
Methods Mol Biol ; 2005: 153-163, 2019.
Article in English | MEDLINE | ID: mdl-31175651

ABSTRACT

Stroke is the fifth leading cause of death among Americans each year. Current standard-of-care treatment for stroke deploys intravenous tissue-type plasminogen activator (tPA), mechanical thrombolysis, or delivery of fibrinolytics. Although these therapies have reduced stroke-induced damage, therapeutic options still remain limited. Transplantation of patient-specific neural stem (NS) cells represents a promising strategy for the treatment of stroke. Basic science research has shown that transplanted NS cells can differentiate in the brain of rodent models of stroke and promote behavioral recovery. Clinical trials exploring the feasibility of stem cell treatment for stroke are currently being conducted. However, questions remain regarding the optimal means of delivering NS cells, including cell dose, infusion speed, timing of transplantation, anatomic site, and imaging-assisted monitoring and guidance. Of the different available delivery modalities, intravascular NS delivery after stroke represents one practical approach. In this chapter, I provide methods for intravascular delivery of NS cells in a mouse model of stroke. The techniques involved include cell culture of NS cells, flow cytometry of NS cells, modeling stroke via unilateral common carotid artery occlusion, intra-arterial injection of NS cells into the brain, behavior analyses, and immunohistochemistry. Intra-arterial NS cell therapy has the potential to improve functional recovery after ischemic stroke.


Subject(s)
Cell Differentiation , Neural Stem Cells/metabolism , Stem Cell Transplantation , Stroke , Animals , Disease Models, Animal , Humans , Mice , Neural Stem Cells/pathology , Stroke/metabolism , Stroke/pathology , Stroke/physiopathology , Stroke/therapy
17.
Methods Mol Biol ; 2005: 221-231, 2019.
Article in English | MEDLINE | ID: mdl-31175656

ABSTRACT

The search for a better animal model to simulate human disease has been a "holy grail" of biomedical research for decades. Recent identification of different types of pluripotent stem cells (PS cells) and advances in chimera research might soon permit the generation of interspecies chimeras from closely related species, such as those between humans and other primates. Here, we suggest that the creation of human-primate chimeras-specifically, the transfer of human stem cells into (non-ape) primate hosts-could surpass the limitations of current monkey models of neurological and psychiatric disease, but would also raise important ethical considerations concerning the use of monkeys in invasive research. Questions regarding the scientific value and ethical concerns raised by the prospect of human-monkey chimeras are more urgent in light of recent advances in PS cell research and attempts to generate interspecies chimeras between humans and animals. While some jurisdictions prohibit the introduction of human PS cells into monkey preimplantation embryos, other jurisdictions may permit and even encourage such experiments. Therefore, it is useful to consider blastocyst complementation experiments more closely in light of advances that could make these chimeras possible and to consider the ethical and political issues that are raised.


Subject(s)
Bioethical Issues , Disease Models, Animal , Ethics, Research , Stem Cell Transplantation/ethics , Transplantation Chimera , Animals , Haplorhini , Humans
18.
Curr Protoc Stem Cell Biol ; 49(1): e85, 2019 06.
Article in English | MEDLINE | ID: mdl-30995363

ABSTRACT

The production of human organs inside human-animal interspecies chimeras might one day comprise a viable strategy for generating patient-specific organs, but such experiments will require human chimera-competent pluripotent stem (PS) cells. The stabilization of PS cell self-renewal in serum-free medium and ERK blockade might be critical for capturing primate chimera-competent pluripotency. It has recently been shown that shielding primate cells from the activation of ERK, WNT, and PKC signaling is crucial for deriving African green monkey ERK-independent PS cells. Here, I show that this principle is generalizable to human cells. In this chapter, methods are provided to reset conventional human PS cells to ERK-independence using histone deacetylase inhibitors and PGCX media comprised of N2B27 medium supplemented with LIF, PD0325901, Go6983, CHIR99021, and XAV939. The novel stem cells exhibit higher levels of KLF4 and manifest increased mitochondrial membrane depolarization. However, the author observed that not all PS cell lines are amenable to small molecule-mediated resetting. The ERK-independent PS cells described herein will provide a useful resource for testing interspecies organogenesis strategies. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Pluripotent Stem Cells/cytology , Animals , Chimera/physiology , Chlorocebus aethiops , Humans , Kruppel-Like Factor 4 , MAP Kinase Signaling System/physiology
19.
Biochem Biophys Res Commun ; 510(1): 78-84, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30660369

ABSTRACT

Generating human organs inside interspecies chimeras might one day produce patient-specific organs for clinical applications, but further advances in identifying human chimera-competent pluripotent stem (PS) cells are needed. Moreover, the potential for human PS cells to contribute to the brains in human-animal chimeras raises ethical questions. The use of non-human primate (NHP) chimera-competent PS cells would allow one to test interspecies organogenesis strategies while also bypassing such ethical concerns. Here, we provide the first evidence for a putative chimera-competent pluripotent state in NHPs. Using histone deacetylase (HDAC) and selective kinase inhibition, we converted the PS cells of an Old World monkey, the African Green monkey (aGM), to an ERK-independent cellular state that can be propagated in culture conditions similar to those that sustain chimera-competency in rodent cells. The obtained stem cell lines indefinitely self-renew in MEK inhibitor-containing culture media lacking serum replacement and FGF. Compared to conventional PS cells, the novel stem cells express elevated levels of KLF4, exhibit more intense nuclear staining for TFE3, and manifest increased mitochondrial membrane depolarization. These data are preliminary but indicate that the key to deriving primate chimera-competent PS cells is to shield cells from the activation of ERK, PKC, and WNT signaling. Because of the similarity of aGMs to humans, the more ethically palatable use of NHP cells, and the more similar gestation length between aGMs and large animals such as sheep, the aGM cell lines described herein will serve as a useful tool for evaluating the efficacy and safety of interspecies organogenesis strategies. Future studies will examine chimera-competency and generalizability to human cells.


Subject(s)
Chimera/embryology , Extracellular Signal-Regulated MAP Kinases/physiology , Pluripotent Stem Cells/cytology , Animals , Bioethics , Cells, Cultured , Chlorocebus aethiops , Humans , Kruppel-Like Factor 4 , Organogenesis
20.
Nat Cell Biol ; 21(3): 410, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30559458

ABSTRACT

We, the authors, are retracting this Article due to issues that have come to our attention regarding data availability, data description and figure assembly. Specifically, original numerical data are not available for the majority of the graphs presented in the paper. Although original data were available for most EMSA and immunoblot experiments, those corresponding to the published EMSA data of Supplementary Fig. 8a, the independent replicate immunoblots of Fig. 8b and Supplementary Fig. 1e, and the independent replicate EMSA data of Supplementary Figs 6e, 8b, 8c and 8d, are unavailable. Mistakes were detected in the presentation of Figs 3c, 4i and Supplementary Figs 6a, 8a, 8d, 9, and in some cases the ß-actin immunoblots were erroneously described in the figure legends as loading controls, rather than as sample processing controls that were run on separate gels. Although we, the authors, believe that the key findings of the paper are still valid, given the issues with data availability we have concluded that the most appropriate course of action is to retract the Article. We deeply regret these errors and apologize to the scientific community for any confusion this publication may have caused. All authors agree with the retraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...