Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1360140, 2024.
Article in English | MEDLINE | ID: mdl-38711513

ABSTRACT

Introduction: Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods: To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results: We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion: We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.


Subject(s)
Cross-Priming , Dendritic Cells , Genetic Vectors , Receptors, Purinergic P2X7 , Vaccinia virus , Animals , Humans , Mice , Antigen Presentation/immunology , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice, Inbred C57BL , Receptors, Purinergic P2X7/immunology , Receptors, Purinergic P2X7/metabolism , Vaccinia virus/immunology
2.
Stem Cells ; 42(1): 42-54, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37798139

ABSTRACT

Bone marrow microenvironmental stimuli profoundly impact hematopoietic stem cell fate and biology. As G protein-coupled receptors, the bitter taste receptors (TAS2Rs) are key in transmitting extracellular stimuli into an intracellular response, within the oral cavity but also in extraoral tissues. Their expression in the bone marrow (BM)-derived cells suggests their involvement in sensing the BM microenvironmental fluctuation. In the present study, we demonstrated that umbilical cord blood (UCB)-derived CD34+ cells express fully functional TAS2Rs along with the signal transduction cascade components and their activation by the prototypical agonist, denatonium benzoate, significantly modulated genes involved in stemness maintenance and regulation of cell trafficking. The activation of these specific pathways was confirmed in functional in vitro experiments. Denatonium exposure exerted an antiproliferative effect on UCB-derived CD34+ cells, mainly affecting the most undifferentiated progenitor frequency. It also reduced their clonogenicity and repopulating potential in vitro. In addition, the TAS2R signaling activation impaired the UCB-derived CD34+ cell trafficking, mainly reducing the migration toward the chemoattractant agent CXCL12 and modulating the expression of the adhesion molecules CD62L, CD49d, and CD29. In conclusion, our results in UCB-derived CD34+ cells expand the observation of TAS2R expression in the setting of BM-resident cells and shed light on the role of TAS2Rs in the extrinsic regulation of hematopoietic stem cell functions.


Subject(s)
Hematopoietic Stem Cells , Taste , Hematopoietic Stem Cells/metabolism , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Antigens, CD34/metabolism
3.
Int J Mol Sci ; 24(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37762206

ABSTRACT

The tumor niche is an environment rich in extracellular ATP (eATP) where purinergic receptors have essential roles in different cell subtypes, including cancer, immune, and stromal cells. Here, we give an overview of recent discoveries regarding the role of probably the best-characterized purinergic receptor in the tumor microenvironment: P2X7. We cover the activities of the P2X7 receptor and its human splice variants in solid and liquid cancer proliferation, dissemination, and crosstalk with immune and endothelial cells. Particular attention is paid to the P2X7-dependent release of microvesicles and exosomes, their content, including ATP and miRNAs, and, in general, P2X7-activated mechanisms favoring metastatic spread and niche conditioning. Moreover, the emerging role of P2X7 in influencing the adenosinergic axis, formed by the ectonucleotidases CD39 and CD73 and the adenosine receptor A2A in cancer, is analyzed. Finally, we cover how antitumor therapy responses can be influenced by or can change P2X7 expression and function. This converging evidence suggests that P2X7 is an attractive therapeutic target for oncological conditions.

4.
Front Cell Dev Biol ; 10: 1006384, 2022.
Article in English | MEDLINE | ID: mdl-36200041

ABSTRACT

Cancer is a complex disease with a rapid growing incidence and often characterized by a poor prognosis. Although impressive advances have been made in cancer treatments, resistance to therapy remains a critical obstacle for the improvement of patients outcome. Current treatment approaches as chemo-, radio-, and immuno-therapy deeply affect the tumor microenvironment (TME), inducing an extensive selective pressure on cancer cells through the activation of the immune system, the induction of cell death and the release of inflammatory and damage-associated molecular patterns (DAMPS), including nucleosides (adenosine) and nucleotides (ATP and ADP). To survive in this hostile environment, resistant cells engage a variety of mitigation pathways related to metabolism, DNA repair, stemness, inflammation and resistance to apoptosis. In this context, purinergic signaling exerts a pivotal role being involved in mitochondrial function, stemness, inflammation and cancer development. The activity of ATP and adenosine released in the TME depend upon the repertoire of purinergic P2 and adenosine receptors engaged, as well as, by the expression of ectonucleotidases (CD39 and CD73) on tumor, immune and stromal cells. Besides its well established role in the pathogenesis of several tumors and in host-tumor interaction, purinergic signaling has been recently shown to be profoundly involved in the development of therapy resistance. In this review we summarize the current advances on the role of purinergic signaling in response and resistance to anti-cancer therapies, also describing the translational applications of combining conventional anticancer interventions with therapies targeting purinergic signaling.

5.
Methods Mol Biol ; 2510: 303-314, 2022.
Article in English | MEDLINE | ID: mdl-35776333

ABSTRACT

The tumor microenvironment is rich in components that strongly influence cancer cell survival. One of the pivotal molecules present at the tumor bed is ATP, which has an essential role in promoting cancer proliferation and metastasis and immune responses via its receptor P2X7. Several studies have proved the efficacy of P2X7 pharmacological blockade in inhibiting primary and metastatic tumor growth in preclinical models. Here we describe the experimental procedures that we optimized to test P2X7 roles in carcinogenesis by antagonist administration. Special attention is paid to their concentrations and routes of administration. The depicted in vitro models include cell count and viability assays, which are useful to test P2X7 roles in cell proliferation and vitality, and the soft agar colony formation test that allows investigation of the transforming and invading abilities of tumor cells. We also describe systemic and intramass administration of P2X7 blockers in murine models of melanoma and leukemia. Both xenotransplant and syngeneic experimental tumor models are detailed.


Subject(s)
Neoplasms , Receptors, Purinergic P2X7 , Animals , Cell Proliferation , Mice , Models, Theoretical , Neoplasms/drug therapy , Tumor Microenvironment
6.
Front Cell Dev Biol ; 10: 876510, 2022.
Article in English | MEDLINE | ID: mdl-35663396

ABSTRACT

ATP and adenosine are key constituents of the tumor niche where they exert opposite and complementary roles. ATP can be released in response to cell damage or actively released by tumor cells and subsequently degraded into adenosine, which accumulates within the tumor microenvironment. Notably, while ATP promotes immune eradicating responses mainly via the P2X7 receptor (P2X7R), extracellular adenosine acts as a potent immune suppressor and facilitates neovascularization thanks to the A2A receptor (A2AR). To date, studies exploring the interplay between P2X7R and A2AR in the tumor microenvironment are as yet missing. Here, we show that, in C57/bl6 P2X7 null mice inoculated with B16-F10 melanoma cells, several pro-inflammatory cytokines, including interleukin 1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 12 (IL-12), interleukin 17 (IL-17), interferon gamma (IFN-γ) were significantly decreased, while the immune suppressant transforming growth factor beta (TGF-ß) was almost three-fold increased. Interestingly, tumors growing in P2X7-null mice upregulated tumor-associated and splenic A2AR, suggesting that immunosuppression linked to lack of the P2X7R might depend upon A2AR overexpression. Immunohistochemical analysis showed that tumor cells' A2AR expression was increased, especially around necrotic areas, and that vascular endothelial growth factor (VEGF) and the endothelial marker CD31 were upregulated. A2AR antagonist SCH58261 treatment reduced tumor growth similarly in the P2X7 wild type or null mice strain. However, SCH58261 reduced VEGF only in the P2X7 knock out mice, thus supporting the hypothesis of an A2AR-mediated increase in vascularization observed in the P2X7-null host. SCH58261 administration also significantly reduced intratumor TGF-ß levels, thus supporting a key immune suppressive role of A2AR in our model. Altogether, these results indicate that in the absence of host P2X7R, the A2AR favors tumor growth via immune suppression and neovascularization. This study shows a novel direct correlation between P2X7R and A2AR in oncogenesis and paves the way for new combined therapies promoting anti-cancer immune responses and reducing tumor vascularization.

7.
Cell Death Dis ; 12(12): 1088, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34789738

ABSTRACT

Tumor growth and metastatic spreading are heavily affected by the P2X7 receptor as well as microvesicles and exosomes release into the tumor microenvironment. P2X7 receptor stimulation is known to trigger vesicular release from immune and central nervous system cells. However, P2X7 role in microvesicles and exosomes delivery from tumor cells was never analyzed in depth. Here we show that P2X7 is overexpressed in patients affected by metastatic malignant melanoma and that its expression closely correlates with reduced overall survival. Antagonism of melanoma cell-expressed P2X7 receptor inhibited in vitro anchorage-independent growth and migration and in vivo dissemination and lung metastasis formation. P2X7 stimulation triggered the release of miRNA-containing microvesicles and exosomes from melanoma cells, profoundly altering the nature of their miRNA content, as well as their dimensions and quantity. Among the more than 200 miRNAs that we found up-or-down-modulated for each vesicular fraction tested, we identified three miRNAs, miR-495-3p, miR-376c-3p, and miR-6730-3p, that were enriched in both the exosome and microvesicle fraction in a P2X7-dependent fashion. Interestingly, upon transfection, these miRNAs promoted melanoma cell growth or migration, and their vesicular release was minimized by P2X7 antagonism. Our data unveil an exosome/microvesicle and miRNA-dependent mechanism for the pro-metastatic activity of the P2X7 receptor and highlight this receptor as a suitable prognostic biomarker and therapeutic target in malignant melanoma.


Subject(s)
Exosomes/metabolism , Melanoma/metabolism , Receptors, Purinergic P2X7/metabolism , Animals , Cell Proliferation/physiology , Humans , Melanoma/genetics , Melanoma/pathology , Mice , Neoplasm Metastasis , Receptors, Purinergic P2X7/genetics
9.
Front Cell Dev Biol ; 9: 645605, 2021.
Article in English | MEDLINE | ID: mdl-33763425

ABSTRACT

The P2X7 receptor is an ion channel gated by the nucleotide ATP, known for its role in immune responses and recently emerging as a critical onco-promoting factor. Lymphocytes, myeloid cells, and their precursors were among the first cells proved to express a functional P2X7 receptor; therefore, it is not surprising that lymphoproliferative and myeloproliferative diseases, also known as hematological malignancies, were shown to be related in their insurgence and progression to P2X7 alterations. Here, we overview established and recent literature relating P2X7 with the biological mechanisms underlying leukemias, lymphomas, and multiple myeloma development. Particular attention is paid to studies published in the very recent past correlating P2X7 with ATP concentration in the leukemic microenvironment and P2X7 overexpression to acute myeloid leukemia aggressiveness and response to chemotherapy. The described literature strongly suggests that P2X7 and its genetic variants could be regarded as potential new biomarkers in hematological malignancies and that both P2X7 antagonists and agonists could emerge as new therapeutic tools alone or in combination with traditional chemotherapy.

10.
Cells ; 10(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33477845

ABSTRACT

The P2X7 receptor for extracellular ATP is a well-established mediator of tumoral development and progression both in solid cancers and hematological malignancies. The human P2X7 gene is highly polymorphic, and several splice variants of the receptor have been identified in time. P2X7 single-nucleotide polymorphisms (SNPs) have been broadly analyzed by studies relating them to pathologies as different as infectious, inflammatory, nervous, and bone diseases, among which cancer is included. Moreover, in the last years, an increasing number of reports concentrated on P2X7 splice variants' different roles and their implications in pathological conditions, including oncogenesis. Here, we give an overview of established and recent literature demonstrating a role for human P2X7 gene products in oncological conditions, mainly focusing on current data emerging on P2X7 isoform B and nfP2X7. We explored the role of these and other genetic variants of P2X7 in cancer insurgence, dissemination, and progression, as well as the effect of chemotherapy on isoforms expression. The described literature strongly suggests that P2X7 variants are potential new biomarkers and therapeutical targets in oncological conditions and that their study in carcinogenesis deserves to be further pursued.


Subject(s)
Carcinogenesis , Neoplasm Proteins , Neoplasms , Polymorphism, Single Nucleotide , Receptors, Purinergic P2X7 , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Protein Isoforms , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
11.
J Bone Oncol ; 31: 100398, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35340569

ABSTRACT

Background: Osteosarcoma (OS) is the most common type of primary bone cancer affecting children and adolescents. OS has a high propensity to spread meaning the disease is often incurable and fatal. There have been no improvements in survival rates for decades. This highlights an urgent need for the development of novel therapeutic strategies. Here, we report in vitro and in vivo data that demonstrates the role of purinergic signalling, specifically, the B isoform of the purinergic receptor P2RX7 (P2RX7B), in OS progression and metastasis. Methods: TE85 and MNNG-HOS OS cells were transfected with P2RX7B. These cell lines were then characterised and assessed for proliferation, cell adhesion, migration and invasion in vitro. We used these cells to perform both paratibial and tail vein injected mouse studies where the primary tumour, bone and lungs were analysed. We used RNA-seq to identify responsive pathways relating to P2RX7B. Results: Our data shows that P2RX7B expression confers a survival advantage in TE85 + P2RX7B and MNNG-HOS + P2RX7B human OS cell lines in vitro that is minimised following treatment with A740003, a specific P2RX7 antagonist. P2RX7B expression reduced cell adhesion and P2RX7B activation promoted invasion and migration in vitro, demonstrating a metastatic phenotype. Using an in vivo OS xenograft model, MNNG-HOS + P2RX7B tumours exhibited cancer-associated ectopic bone formation that was abrogated with A740003 treatment. A pro-metastatic phenotype was further demonstrated in vivo as expression of P2RX7B in primary tumour cells increased the propensity of tumour cells to metastasise to the lungs. RNA-seq identified a novel gene axis, FN1/LOX/PDGFB/IGFBP3/BMP4, downregulated in response to A740003 treatment. Conclusion: Our data illustrates a role for P2RX7B in OS tumour growth, progression and metastasis. We show that P2RX7B is a future therapeutic target in human OS.

12.
Cell Death Dis ; 11(10): 876, 2020 10 18.
Article in English | MEDLINE | ID: mdl-33071281

ABSTRACT

Acute myeloid leukemia (AML) is a common adult leukemia often arising from a preexistent myelodysplastic syndrome (MDS). High mortality rates of AML are caused by relapse and chemoresistance; therefore, we analyzed the role of P2X7 receptor (P2X7R) splice variants A and B in AML progression and response to chemotherapy. The expression of P2X7RA and P2X7RB was investigated in samples obtained from MDS and AML untreated subjects or AML patients in relapse or remission after chemotherapy. Both P2X7RA and P2X7RB were overexpressed in AML versus MDS suggesting a disease-promoting function. However, in relapsing patients, P2X7RA was downmodulated, while P2X7RB was upmodulated. Treatment with daunorubicin (DNR), one of the main chemotherapeutics for AML, upregulated P2X7RB expression while reducing P2X7RA mRNA in AML blasts. Interestingly, DNR administration also caused ATP release from AML blasts suggesting that, following chemotherapy, activation of the receptor isoforms via their agonist will be responsible for the differential survival of blasts overexpressing P2X7RA versus P2X7RB. Indeed, AML blasts expressing high levels of P2X7RA were more prone to cell death if exposed to DNR, while those overexpressing P2X7RB were more vital and even protected against DNR toxicity. These data were reproducible also in HEK-293 cells separately expressing P2X7RA and B. P2X7RA facilitation of DNR toxicity was in part due to increased uptake of the drug inside the cell that was lost upon P2X7RB expression. Finally, in an AML xenograft model administration of DNR or the P2X7R antagonist, AZ10606120 significantly reduced leukemic growth and coadministration of the drugs proved more efficacious than single treatment as it reduced both P2X7RA and P2X7RB levels and downmodulated c-myc oncogene. Taken together, our data suggest P2X7RA and P2X7RB as potential prognostic markers for AML and P2X7RB as a therapeutic target to overcome chemoresistance in AML relapsing patients.


Subject(s)
Daunorubicin/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Receptors, Purinergic P2X7/drug effects , Receptors, Purinergic P2X7/metabolism , Gene Expression/drug effects , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/drug therapy , Protein Isoforms/drug effects , Protein Isoforms/genetics , RNA, Messenger/drug effects , RNA, Messenger/metabolism
13.
Front Oncol ; 10: 1225, 2020.
Article in English | MEDLINE | ID: mdl-32793492

ABSTRACT

The contribution of cell-extrinsic factors in Acute Myeloid Leukemia (AML) generation and persistence has gained interest. Bitter taste receptors (TAS2Rs) are G protein-coupled receptors known for their primary role as a central warning signal to induce aversion toward noxious or harmful substances. Nevertheless, the increasing amount of evidence about their extra-oral localization has suggested a wider function in sensing microenvironment, also in cancer settings. In this study, we found that AML cells express functional TAS2Rs. We also highlighted a significant association between the modulation of some TAS2Rs and the poor-prognosis AML groups, i.e., TP53- and TET2-mutated, supporting a potential role of TAS2Rs in AML cell biology. Gene expression profile analysis showed that TAS2R activation with the prototypical agonist, denatonium benzoate, significantly modulated a number of genes involved in relevant AML cellular processes. Functional assay substantiated molecular data and indicated that denatonium reduced AML cell proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation. Moreover, denatonium exposure impaired AML cell motility and migratory capacity, and inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation. In conclusion, our results in AML cells expand the observation of cancer TAS2R expression to the setting of hematological neoplasms and shed light on a role of TAS2Rs in the extrinsic regulation of leukemia cell functions.

14.
Stem Cell Rev Rep ; 16(5): 1005-1012, 2020 10.
Article in English | MEDLINE | ID: mdl-32681233

ABSTRACT

Despite the high intrinsic ability of bone tissue to regenerate, bone healing fails in some pathological conditions and especially in the presence of large defects. Due to the strong relationship between bone development and vascularization during in vivo bone formation and repair, strategies promoting the osteogenic-angiogenic coupling are crucial for regenerative medicine. Increasing evidence shows that miRNAs play important roles in controlling osteogenesis and bone vascularization and are important tool in medical research although their clinical use still needs to optimize miRNA stability and delivery. Pulsed electromagnetic fields (PEMFs) have been successfully used to enhance bone repair and their clinical activity has been associated to their ability to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). In this study we investigated the potential ability of PEMF exposure to modulate selected miRNAs involved in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). We show that, during in vitro hBMSC differentiation, PEMFs up-modulate the expression of miR-26a and miR-29b, which favor osteogenic differentiation, and decrease miR-125b which acts as an inhibitor miRNA. As PEMFs promote the expression and release of miRNAs also involved in angiogenesis, we conclude that PEMFs may represent a noninvasive and safe strategy to modulate miRNAs with relevant roles in bone repair and with the potential to regulate the osteogenic-angiogenic coupling.


Subject(s)
Cell Differentiation/genetics , Electromagnetic Fields , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic/genetics , Osteogenesis/genetics , Culture Media/chemistry , Gene Expression Regulation , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
15.
Front Pharmacol ; 11: 96, 2020.
Article in English | MEDLINE | ID: mdl-32153407

ABSTRACT

The P2X7 receptor (P2X7R) is an ATP-gated ion channel known for its proinflammatory activity. Despite its participation in host defense against pathogens, the role played in viral infections, notably those caused by herpes viruses, has been seldom studied. Here we investigated the effect of P2X7R expression on human herpes virus 6 A (HHV-6A) infection of P2X7R-expressing HEK293 cells. We show that functional P2X7R increases while its blockade decreases viral load. Interestingly, HHV-6A infection was enhanced in HEK293 cells transfected with P2X7R cDNA bearing the gain of function 489C>T SNP (rs208294, replacing a histidine for tyrosine at position 155). The P2X7R 489C>T polymorphism correlated with HHV-6A infection also in a cohort of 50 women affected with idiopathic infertility, a condition previously shown to correlate with HHV-6A infection. None of the infertile women infected by HHV-6A was homozygote for 489CC genotype, while on the contrary HHV-6A infection significantly associated with the presence of the rs208294 allele. Levels of soluble human leukocyte antigen G (sHLA-G), a factor promoting embryo implant, measured in uterine flushings negatively correlated with the 489TT genotype and HHV-6A infection, while proinflammatory cytokines interleukins 1α (IL-1α), 1ß (IL-1ß), and 8 (IL-8) positively correlated with both the 489T allele presence and viral infection. Taken together these data point to the P2X7R as a new therapeutic target to prevent HHV-6A infection and the associated infertility.

16.
Methods Mol Biol ; 2041: 183-195, 2020.
Article in English | MEDLINE | ID: mdl-31646489

ABSTRACT

ATP is one of the main components of the tumor microenvironment, where it affects cell growth, tumor progression and antitumor immune response. The development of the pmeLUC probe, a luciferase engineered to be expressed on the outer facet of the plasma membrane, allowed real-time measurement of extracellular ATP in vitro and in vivo systems, among which the tumor microenvironment. Here we describe the experimental procedures to measure extracellular ATP levels in the tumor microenvironment of three different cancer models generated by the implant of pmeLUC-expressing tumor cells into the appropriate mice strain: ACN human neuroblastoma (nude/nude mice host), WEHI-3B murine leukemia (BALB/c host), and B16F10 murine melanoma (C57Bl/6 host). The procedure to obtain stable expression of pmeLUC in different cell types and methods for the measurement of extracellular ATP with pmeLUC in vitro are also described.


Subject(s)
Adenosine Triphosphate/metabolism , Biosensing Techniques/methods , Leukemia, Experimental/metabolism , Luciferases/metabolism , Melanoma, Experimental/metabolism , Neuroblastoma/metabolism , Tumor Microenvironment/physiology , Animals , Cell Membrane/metabolism , Humans , Leukemia, Experimental/pathology , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neuroblastoma/pathology , Tumor Cells, Cultured
17.
Curr Opin Pharmacol ; 47: 59-64, 2019 08.
Article in English | MEDLINE | ID: mdl-30921559

ABSTRACT

Inflammation is constantly associated to cancer. Malignant tumors often develop at sites of chronic inflammation, and inflammation promotes tumor progression. But, at the same time, inflammation is crucial for anti-tumor immune response. Many factors are responsible for this 'Dr Jekyll/Mr Hyde' roles of inflammation, among which one that is attracting increasing attention is the P2X7 receptor (P2X7R). This receptor is expressed by most malignant tumors and widely diffused in innate and adaptive immune cells, where it supports proliferation, chemotaxis, growth factor, and cytokine release. P2X7R-targeting may offer novel avenues for anti-cancer therapeutic intervention, but might also impair host anti-tumor responses. This short review highlights recent findings on the dual role of the P2X7R in cancer-associated inflammation.


Subject(s)
Inflammation/immunology , Neoplasms/immunology , Receptors, Purinergic P2X7/immunology , Animals , Humans , Tumor Microenvironment/immunology
18.
Oncogene ; 38(19): 3636-3650, 2019 05.
Article in English | MEDLINE | ID: mdl-30655604

ABSTRACT

In the tumor microenvironment (TME) ATP and its receptor P2X7 exert a pivotal influence on cancer growth and tumor-host interactions. Here we analyzed the different effect of P2X7 genetic deficiency versus its antagonism on response against P2X7-expressing implanted tumors. We focused on immune cell expression of ATP degrading enzymes CD39 and CD73 and in vivo measured TME's ATP. The immune infiltrate of tumors growing in P2X7 null mice shows a decrease in CD8+ cells and an increased number of Tregs, overexpressing the fitness markers OX40, PD-1, and CD73. A similar Treg phenotype is also present in the spleen of tumor-bearing P2X7 null mice and it is paralleled by a decrease in proinflammatory cytokines and an increase in TGF-ß. Differently, systemic administration of the P2X7 blocker A740003 in wild-type mice left unaltered the number of tumor-infiltrating CD8+ and Treg lymphocytes but increased CD4+ effector cells and decreased their expression of CD39 and CD73. P2X7 blockade did not affect spleen immune cell composition or ectonucleotidase expression but increased circulating INF-γ. Augmented CD73 in P2X7 null mice was mirrored by a decrease in TME ATP concentration and nucleotide reduced secretion from immune cells. On the contrary, TME ATP levels remained unaltered upon P2X7 antagonism, owing to release of ATP from cancerous cells and diminished ectonucleotidase expression by CD4+ and dendritic cells. These data point at P2X7 receptor as a key determinant of TME composition due to its combined action on immune cell infiltrate, ectonucleotidases, and ATP release.


Subject(s)
Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X7/metabolism , Tumor Microenvironment/immunology , 5'-Nucleotidase/metabolism , Animals , Antigens, Differentiation/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Programmed Cell Death 1 Receptor/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/genetics , T-Lymphocytes, Regulatory/pathology
19.
Nat Rev Cancer ; 18(10): 601-618, 2018 10.
Article in English | MEDLINE | ID: mdl-30006588

ABSTRACT

Modulation of the biochemical composition of the tumour microenvironment is a new frontier of cancer therapy. Several immunosuppressive mechanisms operate in the milieu of most tumours, a condition that makes antitumour immunity ineffective. One of the most potent immunosuppressive factors is adenosine, which is generated in the tumour microenvironment owing to degradation of extracellular ATP. Accruing evidence over the past few years shows that ATP is one of the major biochemical constituents of the tumour microenvironment, where it acts at P2 purinergic receptors expressed on both tumour and host cells. Stimulation of P2 receptors has different effects depending on the extracellular ATP concentration, the P2 receptor subtype engaged and the target cell type. Among P2 receptors, the P2X purinergic receptor 7 (P2X7R) subtype appears to be a main player in host-tumour cell interactions. Preclinical studies in several tumour models have shown that P2X7R targeting is potentially a very effective anticancer treatment, and many pharmaceutical companies have now developed potent and selective small molecule inhibitors of P2X7R. In this Review, we report on the multiple mechanisms by which extracellular ATP shapes the tumour microenvironment and how its stimulation of host and tumour cell P2 receptors contributes to determining tumour fate.


Subject(s)
Adenosine Triphosphate/metabolism , Neoplasms/metabolism , Receptors, Purinergic P2X7/metabolism , Tumor Microenvironment , Animals , Humans , Neoplasms/genetics , Receptors, Purinergic P2X7/genetics , Signal Transduction
20.
Biochem Pharmacol ; 151: 234-244, 2018 05.
Article in English | MEDLINE | ID: mdl-29288626

ABSTRACT

Damage associated molecular patterns (DAMPs) are intracellular molecules released from infected or injured cells to activate inflammatory and reparatory responses. One of the most ancient and conserved DAMPs is extracellular ATP that exerts its phlogistic activity mainly through activation of the P2X7 receptor (P2X7R). The P2X7R is an ATP gated ion channel, expressed by most immune cells, including the monocyte-derived cell lineages, T and B lymphocytes and their precursors. Here we give an overview of recent and established literature on the role of P2X7R in septic and sterile inflammation. P2X7R ability in restraining intracellular bacteria and parasite infection by modulation of the immune response are described, with particular focus on Mycobacteria and Plasmodium. Emerging literature on the role of P2X7 in viral infections such as HIV-1 is also briefly covered. Finally, we describe the numerous intracellular pathways related to inflammation and activated by the P2X7R, including the NLRP3 inflammasome, NF-kB, NFAT, GSK3ß and VEGF, and discuss the involvement of P2X7R in chronic diseases. The possible therapeutic applications of P2X7R antagonists are also described.


Subject(s)
Inflammation/drug therapy , Purinergic P2X Receptor Agonists/therapeutic use , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic P2X7/metabolism , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Chronic Disease , Clinical Trials as Topic , Communicable Diseases/drug therapy , Communicable Diseases/immunology , Communicable Diseases/metabolism , Drug Evaluation, Preclinical , Humans , Inflammasomes/metabolism , Inflammation/immunology , Inflammation/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/metabolism , Purinergic P2X Receptor Agonists/administration & dosage , Purinergic P2X Receptor Agonists/adverse effects , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...