Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Oncog ; 29(2): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38505877

ABSTRACT

Lung cancer remains a global health challenge, leading to substantial morbidity and mortality. While prevention and early detection strategies have improved, the need for precise diagnosis, prognosis, and treatment remains crucial. In this comprehensive review article, we explore the role of artificial intelligence (AI) in reshaping the management of lung cancer. AI may have different potential applications in lung cancer characterization and outcome prediction. Manual segmentation is a time-consuming task, with high inter-observer variability, that can be replaced by AI-based approaches, including deep learning models such as U-Net, BCDU-Net, and others, to quantify lung nodules and cancers objectively and to extract radiomics features for the characterization of the tissue. AI models have also demonstrated their ability to predict treatment responses, such as immunotherapy and targeted therapy, by integrating radiomic features with clinical data. Additionally, AI-based prognostic models have been developed to identify patients at higher risk and personalize treatment strategies. In conclusion, this review article provides a comprehensive overview of the current state of AI applications in lung cancer management, spanning from segmentation and virtual biopsy to outcome prediction. The evolving role of AI in improving the precision and effectiveness of lung cancer diagnosis and treatment underscores its potential to significantly impact clinical practice and patient outcomes.


Subject(s)
Artificial Intelligence , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Immunotherapy , Radiomics , Lung
2.
Tomography ; 9(5): 1629-1637, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37736983

ABSTRACT

This exploratory retrospective study aims to quantitatively compare the image quality of unenhanced brain computed tomography (CT) reconstructed with an iterative (AIDR-3D) and a deep learning-based (AiCE) reconstruction algorithm. After a preliminary phantom study, AIDR-3D and AiCE reconstructions (0.5 mm thickness) of 100 consecutive brain CTs acquired in the emergency setting on the same 320-detector row CT scanner were retrospectively analyzed, calculating image noise reduction attributable to the AiCE algorithm, artifact indexes in the posterior cranial fossa, and contrast-to-noise ratios (CNRs) at the cortical and thalamic levels. In the phantom study, the spatial resolution of the two datasets proved to be comparable; conversely, AIDR-3D reconstructions showed a broader noise pattern. In the human study, median image noise was lower with AiCE compared to AIDR-3D (4.7 vs. 5.3, p < 0.001, median 19.6% noise reduction), whereas AIDR-3D yielded a lower artifact index than AiCE (7.5 vs. 8.4, p < 0.001). AiCE also showed higher median CNRs at the cortical (2.5 vs. 1.8, p < 0.001) and thalamic levels (2.8 vs. 1.7, p < 0.001). These results highlight how image quality improvements granted by deep learning-based (AiCE) and iterative (AIDR-3D) image reconstruction algorithms vary according to different brain areas.


Subject(s)
Deep Learning , Humans , Retrospective Studies , Tomography, X-Ray Computed , Brain/diagnostic imaging , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...