Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 515, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35840900

ABSTRACT

BACKGROUND: The chance to compare patterns of differential gene expression in related ecologically distinct species can be particularly fruitful to investigate the genetics of adaptation and phenotypic plasticity. In this regard, a powerful technique such as RNA-Seq applied to ecologically amenable taxa allows to address issues that are not possible in classic model species. Here, we study gene expression profiles and larval performance of the cactophilic siblings Drosophila buzzatii and D. koepferae reared in media that approximate natural conditions and evaluate both chemical and nutritional components of the diet. These closely related species are complementary in terms of host-plant use since the primary host of one is the secondary of the other. D. koepferae is mainly a columnar cactus dweller while D. buzzatii prefers Opuntia hosts. RESULTS: Our comparative study shows that D. buzzatii and D. koepferae have different transcriptional strategies to face the challenges posed by their natural resources. The former has greater transcriptional plasticity, and its response is mainly modulated by alkaloids of its secondary host, while the latter has a more canalized genetic response, and its transcriptional plasticity is associated with the cactus species. CONCLUSIONS: Our study unveils a complex pleiotropic genetic landscape in both species, with functional links that relate detox responses and redox mechanisms with developmental and neurobiological processes. These results contribute to deepen our understanding of the role of host plant shifts and natural stress driving ecological specialization.


Subject(s)
Cactaceae , Drosophila , Adaptation, Physiological , Animals , Cactaceae/genetics , Drosophila/physiology , Larva/genetics , Transcriptome
2.
Sci Rep ; 11(1): 17109, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429448

ABSTRACT

The evolution of large vultures linked to mountainous habitats was accompanied by extreme physiological and behavioral specializations for energetically efficient flights. However, little is known on the genetic traits associated with the evolution of these obligate soaring scavengers. Mitochondrial DNA plays a vital role in regulating oxidative stress and energy production, and hence may be an important target of selection for flight performance. Herein, we characterized the first mitogenomes of the Andean and California condors, the world's heaviest flying birds and the only living representatives of the Vultur and Gymnogyps genus. We reconstructed the phylogenetic relationships and evaluated possible footprints of convergent evolution associated to the life-history traits and distributional range of vultures. Our phylogenomic analyses supported the independent evolution of vultures, with the origin of Cathartidae in the early Paleogene (~ 61 Mya), and estimated the radiation of extant condors during the late Miocene (~ 11 Mya). Selection analyses indicated that vultures exhibit signals of relaxation of purifying selection relative to other accipitrimorph raptors, possibly indicating the degeneration of flapping flight ability. Overall, our results suggest that the extreme specialization of vultures for efficient soaring flight has compensated the evolution of large body sizes mitigating the selection pressure on mtDNA.


Subject(s)
Birds/genetics , Evolution, Molecular , Genome, Mitochondrial , Animals , Birds/classification , Endangered Species , Phylogeny , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...