Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Med Phys ; 42(5): 2342-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25979028

ABSTRACT

PURPOSE: The purpose of this study was to experimentally assess the possibility to monitor carbon ion range variations--due to tumor shift and/or elongation or shrinking--using prompt-gamma (PG) emission with inhomogeneous phantoms. Such a study is related to the development of PG monitoring techniques to be used in a carbon ion therapy context. METHODS: A 95 MeV/u carbon ion beam was used to irradiate phantoms with a variable density along the ion path to mimic the presence of bone and lung in homogeneous humanlike tissue. PG profiles were obtained after a longitudinal scan of the phantoms. A setup comprising a narrow single-slit collimator and two detectors placed at 90° with respect to the beam axis was used. The time of flight technique was applied to allow the selection between PG and background events. RESULTS: Using the positions at 50% entrance and 50% falloff of the PG profiles, a quantity called prompt-gamma profile length (PGPL) is defined. It is possible to observe shifts in the PGPL when there are absolute ion range shifts as small as 1-2 mm. Quantitatively, for an ion range shift of -1.33 ± 0.46 mm (insertion of a Teflon slab), a PGPL difference of -1.93 ± 0.58 mm and -1.84 ± 1.27 mm is obtained using a BaF2 and a NaI(Tl) detector, respectively. In turn, when an ion range shift of 4.59 ± 0.42 mm (insertion of a lung-equivalent material slab) is considered, the difference is of 4.10 ± 0.54 and 4.39 ± 0.80 mm for the same detectors. CONCLUSIONS: Herein, experimental evidence of the usefulness of employing PG to monitor carbon ion range using inhomogeneous phantoms is presented. Considering the homogeneous phantom as reference, the results show that the information provided by the PG emission allows for detecting ion range shifts as small as 1-2 mm. When considering the expected PG emission from an energy slice in a carbon ion therapy scenario, the experimental setup would allow to retrieve the same PGPL as the high statistics of the full experimental dataset in 58% of the times. However, this success rate increases to 93% when using a better optimized setup by means of Monte Carlo simulations.


Subject(s)
Carbon , Ions , Computer Simulation , Humans , Hypertonic Solutions , Models, Biological , Monte Carlo Method , Phantoms, Imaging , Polymethyl Methacrylate , Polytetrafluoroethylene , Radiometry
2.
Phys Med Biol ; 60(2): 565-94, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25548833

ABSTRACT

Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10(-6) for 95 MeV u(-1) carbon ions, (79 ± 2stat ± 23sys) × 10(-6) for 310 MeV u(-1) carbon ions, and (16 ± 0.07stat ± 1sys) × 10(-6) for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u(-1) carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u(-1) carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10(-6) counts ion(-1) mm(-1) sr(-1)) was obtained with a water target compared to a PMMA one.


Subject(s)
Gamma Rays , Proton Therapy/methods , Protons , Radiation Dosage , Proton Therapy/instrumentation
3.
Phys Rev Lett ; 113(5): 052502, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25126913

ABSTRACT

A marked difference in the nuclear charge radius was observed between the I^{π}=3^{+} ground state and the I^{π}=0^{+} isomer of ^{38}K and is qualitatively explained using an intuitive picture of proton-neutron pairing. In a high-precision measurement of the isomer shift using bunched-beam collinear laser spectroscopy at CERN-ISOLDE, a change in the mean-square charge radius of ⟨r_{c}^{2}⟩(^{38}K^{m})-⟨r_{c}^{2}⟩(^{38}K^{g})=0.100(6) fm^{2} was obtained. This is an order of magnitude more accurate than the result of a previous indirect measurement from which it was concluded that both long-lived states in ^{38}K have similar charge radii. Our observation leads to a substantially different understanding since the difference in charge radius is, moreover, opposite in sign to previously reported theoretical predictions. It is demonstrated that the observed isomer shift can be reproduced by large-scale shell-model calculations including proton and neutron excitations across the N,Z=20 shell gaps, confirming the significance of cross-shell correlations in the region of ^{40}Ca.

4.
Phys Rev Lett ; 110(17): 172503, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679713

ABSTRACT

The ground-state spins and magnetic moments of (49,51)K have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE CERN. For 49K a ground-state spin I = 1/2 was firmly established. The observed hyperfine structure of 51K requires a spin I > 1/2 and strongly suggests I = 3/2. From its magnetic moment µ(51K) = +0.5129(22)µ(N) a spin-parity I(π) = 3/2+ with a dominant π1d(3/2)(-1) hole configuration was deduced. This establishes for the first time the reinversion of the single-particle levels and illustrates the prominent role of the residual monopole interaction for single-particle levels and shell evolution.

5.
Phys Rev Lett ; 108(4): 042504, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400831

ABSTRACT

Charge radii of all magnesium isotopes in the sd shell have been measured, revealing evolution of the nuclear shape throughout two prominent regions of assumed deformation centered on (24)Mg and (32)Mg. A striking correspondence is found between the nuclear charge radius and the neutron shell structure. The importance of cluster configurations towards N=8 and collectivity near N=20 is discussed in the framework of the fermionic molecular dynamics model. These essential results have been made possible by the first application of laser-induced nuclear orientation for isotope shift measurements.

6.
Phys Rev Lett ; 104(12): 129201; author reply 129202, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20366572
7.
Phys Rev Lett ; 103(14): 142501, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19905565

ABSTRACT

We report the first confirmation of the predicted inversion between the pi2p3/2 and pi1f5/2 nuclear states in the nu(g)9/2 midshell. This was achieved at the ISOLDE facility, by using a combination of in-source laser spectroscopy and collinear laser spectroscopy on the ground states of 71,73,75Cu, which measured the nuclear spin and magnetic moments. The obtained values are mu(71Cu)=+2.2747(8)mu(N), mu(73Cu)=+1.7426(8)mu(N), and mu(75Cu)=+1.0062(13)mu(N) corresponding to spins I=3/2 for 71,73Cu and I=5/2 for 75Cu. The results are in fair agreement with large-scale shell-model calculations.

8.
Phys Rev Lett ; 99(21): 212501, 2007 Nov 23.
Article in English | MEDLINE | ID: mdl-18233211

ABSTRACT

We report on the first determination of the nuclear ground-state spin of 33Mg, I=3/2, and its magnetic moment, mu= -0.7456(5) mu(N), by combining laser spectroscopy with nuclear magnetic resonance techniques. These values are inconsistent with an earlier suggested 1 particle-1 hole configuration and provide evidence for a 2 particle-2 hole intruder ground state with negative parity. The results are in agreement with an odd-neutron occupation of the 3/2 [321] Nilsson orbital at a large prolate deformation. The discussion emphasizes the need of further theoretical and experimental investigation of the island of inversion, a region previously thought to be well understood.

SELECTION OF CITATIONS
SEARCH DETAIL