Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 436(10): 168559, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38580077

ABSTRACT

Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing downstream translation under stress conditions. Computational and empirical methods have identified uORFs in the 5'-UTRs of approximately half of all mouse and human transcripts, making uORFs one of the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs were rarely studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functional microprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add SLC35A4-MP to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.


Subject(s)
Mitochondrial Membranes , Mitochondrial Proteins , Nucleotide Transport Proteins , Open Reading Frames , Humans , 5' Untranslated Regions/genetics , Amino Acid Sequence , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Open Reading Frames/genetics , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism , HEK293 Cells
2.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37808637

ABSTRACT

There has been a dramatic increase in the identification of non-conical translation and a significant expansion of the protein-coding genome and proteome. Among the strategies used to identify novel small ORFs (smORFs), Ribosome profiling (Ribo-Seq) is the gold standard for the annotation of novel coding sequences by reporting on smORF translation. In Ribo-Seq, ribosome-protected footprints (RPFs) that map to multiple sites in the genome are computationally removed since they cannot unambiguously be assigned to a specific genomic location, or to a specific transcript in the case of multiple isoforms. Furthermore, RPFs necessarily result in short (25-34 nucleotides) reads, increasing the chance of ambiguous and multi-mapping alignments, such that smORFs that reside in these regions cannot be identified by Ribo-Seq. Here, we show that the inclusion of proteogenomics to create a Ribosome Profiling and Proteogenomics Pipeline (RP3) bypasses this limitation to identify a group of microprotein-encoding smORFs that are missed by current Ribo-Seq pipelines. Moreover, we show that the microproteins identified by RP3 have different sequence compositions from the ones identified by Ribo-Seq-only pipelines, which can affect proteomics identification. In aggregate, the development of RP3 maximizes the detection and confidence of protein-encoding smORFs and microproteins.

3.
Cell Metab ; 35(1): 166-183.e11, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36599300

ABSTRACT

Microproteins (MPs) are a potentially rich source of uncharacterized metabolic regulators. Here, we use ribosome profiling (Ribo-seq) to curate 3,877 unannotated MP-encoding small ORFs (smORFs) in primary brown, white, and beige mouse adipocytes. Of these, we validated 85 MPs by proteomics, including 33 circulating MPs in mouse plasma. Analyses of MP-encoding mRNAs under different physiological conditions (high-fat diet) revealed that numerous MPs are regulated in adipose tissue in vivo and are co-expressed with established metabolic genes. Furthermore, Ribo-seq provided evidence for the translation of Gm8773, which encodes a secreted MP that is homologous to human and chicken FAM237B. Gm8773 is highly expressed in the arcuate nucleus of the hypothalamus, and intracerebroventricular administration of recombinant mFAM237B showed orexigenic activity in obese mice. Together, these data highlight the value of this adipocyte MP database in identifying MPs with roles in fundamental metabolic and physiological processes such as feeding.


Subject(s)
Adipocytes, White , Adipose Tissue, Brown , Humans , Animals , Mice , Adipocytes, White/metabolism , Adipose Tissue, Brown/metabolism , Open Reading Frames/genetics , Adipose Tissue, White/metabolism , Adipocytes, Brown/metabolism , Micropeptides
4.
Front Microbiol ; 13: 891610, 2022.
Article in English | MEDLINE | ID: mdl-35814645

ABSTRACT

Enoyl-ACP reductases (ENRs) are enzymes that catalyze the last step of the elongation cycle during fatty acid synthesis. In recent years, new bacterial ENR types were discovered, some of them with structures and mechanisms that differ from the canonical bacterial FabI enzymes. Here, we briefly review the diversity of structural and catalytic properties of the canonical FabI and the new FabK, FabV, FabL, and novel ENRs identified in a soil metagenome study. We also highlight recent efforts to use the newly discovered Fabs as targets for drug development and consider the complex evolutionary history of this diverse set of bacterial ENRs.

5.
Front Chem ; 8: 586294, 2020.
Article in English | MEDLINE | ID: mdl-33330374

ABSTRACT

The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.

SELECTION OF CITATIONS
SEARCH DETAIL
...