Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Publication year range
1.
Nature ; 632(8023): 75-80, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987601

ABSTRACT

Coherent optical driving in quantum solids is emerging as a research frontier, with many reports of interesting non-equilibrium quantum phases1-4 and transient photo-induced functional phenomena such as ferroelectricity5,6, magnetism7-10 and superconductivity11-14. In high-temperature cuprate superconductors, coherent driving of certain phonon modes has resulted in a transient state with superconducting-like optical properties, observed far above their transition temperature Tc and throughout the pseudogap phase15-18. However, questions remain on the microscopic nature of this transient state and how to distinguish it from a non-superconducting state with enhanced carrier mobility. For example, it is not known whether cuprates driven in this fashion exhibit Meissner diamagnetism. Here we examine the time-dependent magnetic field surrounding an optically driven YBa2Cu3O6.48 crystal by measuring Faraday rotation in a magneto-optic material placed in the vicinity of the sample. For a constant applied magnetic field and under the same driving conditions that result in superconducting-like optical properties15-18, a transient diamagnetic response was observed. This response is comparable in size with that expected in an equilibrium type II superconductor of similar shape and size with a volume susceptibility χv of order -0.3. This value is incompatible with a photo-induced increase in mobility without superconductivity. Rather, it underscores the notion of a pseudogap phase in which incipient superconducting correlations are enhanced or synchronized by the drive.

2.
Science ; 365(6456): 906-910, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31467219

ABSTRACT

Charge density modulations have been observed in all families of high-critical temperature (T c) superconducting cuprates. Although they are consistently found in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering, we carefully determined the temperature dependence of charge density modulations in YBa2Cu3O7-δ and Nd1+ x Ba2- x Cu3O7-δ for several doping levels. We isolated short-range dynamical charge density fluctuations in addition to the previously known quasi-critical charge density waves. They persist up to well above the pseudogap temperature T*, are characterized by energies of a few milli-electron volts, and pervade a large area of the phase diagram.

SELECTION OF CITATIONS
SEARCH DETAIL