Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Fitoterapia ; 175: 105936, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38552807

ABSTRACT

In this work, the first specific phytochemical analysis on Odontites vulgaris Moench collected in Central Italy was performed. The aerial parts ethanolic extract was studied and eight compounds were identified: pheophytin a (1), aucubin (2), catalpol (3), shanzhiside methyl ester (4), melampyroside (5), 8-epi-loganin (6), caryoptoside (7) and quinic acid (8). To the best of our knowledge, in this study, compounds (7-8) resulted to be isolated from the genus for the first time. The chemophenetic markers of the family and order were evidenced and several important ecological conclusions could be drawn. The ethanolic extract was also tested for several biological activities showing high effects in the antioxidant, cytoprotective and aflatoxin B1 production inhibitory assays. A brief explanation on these activities under the phytochemical standpoint was also included.

2.
Chem Biodivers ; 21(4): e202400254, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38426938

ABSTRACT

In this paper, the first complete review on the seco-iridoids from the genus Jasminum L. was presented. In particular, their occurrence in the genus was detailed together with their biological activities. The literature survey has clearly pointed out that only a few Jasminum species have been studied for their seco-iridoid content evidencing oleoside derivatives as main compounds. In addition, the biological studies performed on them are very scarce focusing mainly on antioxidant and anti-inflammatory assays with modest effectiveness. All these results greatly underline the need for further in-depth analyses on these compounds under both the aspects.


Subject(s)
Iridoids , Jasminum , Anti-Inflammatory Agents/pharmacology
3.
Pharmaceutics ; 16(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543225

ABSTRACT

In this work, phytochemical analysis on different extracts of Roccella tinctoria DC. was reported using different techniques with respect to the past. Twenty volatile and three non-volatile compounds were identified, some of which were found in this species for the first time. The methanolic extracts and their non-volatile components were then evaluated for their antitumor effects in cancerous A549 and Mz-ChA-1 cells and for their tolerability in non-cancerous BEAS-2B and H69 cells, showing IC50 values from 94.6 µg/mL to 416.4 µg/mL, in general. The same extracts and compounds were also tested for their antifungal effects in Candida albicans, with only compound 2 being active, with an MIC50 value of 87 µg/mL. In addition, they were tested for their anti-Candida adhesion activity, anti-Candida biofilm formation, and anti-Candida mature biofilm inhibition, with efficacy percentages generally above 50% but not for all of them. Lastly, the DF3 extract and compounds 1-2 were tested in vivo according to the Galleria mellonella survival assay, showing positive mortality rates above 50% at different concentrations. All these biological assays were conducted on this species for the first time. Comparisons with other lichens and compounds were also presented and discussed.

4.
Antibiotics (Basel) ; 12(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37998817

ABSTRACT

Biofilm formation and lipopolysaccharide (LPS) are implicated in the pathogenesis of gastrointestinal (GI) diseases caused by Gram-negative bacteria. Grape seeds, wine industry by-products, have antioxidant and antimicrobial activity. In the present study, the protective effect of procyanidin-rich grape seed extract (prGSE), from unfermented pomace of Vitis vinifera L. cv Bellone, on bacterial LPS-induced oxidative stress and epithelial barrier integrity damage has been studied in a model of Caco-2 cells. The prGSE was characterized at the molecular level using HPLC and NMR. The in vitro activity of prGSE against formation of biofilm of Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli was investigated. In vivo, prGSE activity using infected Galleria mellonella larvae has been evaluated. The results show that the prGSE, if administered with LPS, can significantly reduce the LPS-induced permeability alteration. Moreover, the ability of the extract to prevent Reactive Oxygen Species (ROS) production induced by the LPS treatment of Caco-2 cells was demonstrated. prGSE inhibited the biofilm formation of E. coli and S. Typhimurium. In terms of in vivo activity, an increase in survival of infected G. mellonella larvae after treatment with prGSE was demonstrated. In conclusion, grape seed extracts could be used to reduce GI damage caused by bacterial endotoxin and biofilms of Gram-negative bacteria.

5.
Nat Prod Res ; : 1-6, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904525

ABSTRACT

Pecan nuts (Carya illinoinensis (Wangenh.) K. Koch) contain the highest number of phytochemicals of all nuts, are a natural source of unsaturated fatty acids and other nutrients and can be considered an important addition to the Mediterranean diet al.though several studies have been carried out on pecans, employing several analytical techniques, no systematic study of the metabolic profile is available in literature. In this study, the metabolic profile of pecan nuts of three different cultivars was analysed by Nuclear Magnetic Resonance Spectroscopy. The cultivars compared were Wichita, Stuart, and Sioux, all grown in Italy in the same pedoclimatic conditions. 31 metabolites were identified and 28 were quantified and the three species were differentiated based on multivariate PCA analysis. The differences among them, and the levels of scutellarein and GABA, in particular, were attributed to the adaptation of the plants to the climate in their original areas.

6.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570609

ABSTRACT

Vinca sardoa (Stearn) Pignatti, known as Sardinian periwinkle, is widely diffused in Sardinia (Italy). This species contains indole alkaloids, which are known to have a great variety of biological activities. This study investigated the antileukemic activity against a B lymphoblast cell line (SUP-B15) of V. sardoa alkaloid-rich extracts obtained from plants grown in Italy, in Iglesias (Sardinia) and Rome (Latium). All the extracts showed a good capacity to induce reductions in cell proliferation of up to 50% at the tested concentrations (1-15 µg/mL). Moreover, none of the extracts showed cytotoxicity on normal cells at all the studied concentrations.


Subject(s)
Alkaloids , Antineoplastic Agents , Vinca , Alkaloids/pharmacology , Indole Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , Plant Extracts/pharmacology
7.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768978

ABSTRACT

Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.


Subject(s)
Melanoma , Skin Neoplasms , Melanoma/pathology , Skin Neoplasms/drug therapy , Immunomodulating Agents , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plants
8.
Int J Biol Macromol ; 230: 122624, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36403775

ABSTRACT

Posidonia oceanica (L.) Delile is one of the most abundant aquatic vascular higher plants in the Mediterranean Sea belonging to Posidoniaceas family. It is considered as a valuable natural source for multiple uses either for ecological functions or industrial applications. Nevertheless, this marine phanerogam is commonly confused with macroalgae, or seaweeds, known also as cryptogams. The present note intends to discuss the mis-use of the associated terminology of P. oceanica as algae in the scientific literature in order to avoid the widespread of this issue in the future. Thus, an extensive assessment of some important published woks has been conducted. This note will certainly allow the accurate nomenclature of this promising endemic species, which will continue its valorizations' ascension in several potential applications.


Subject(s)
Alismatales , Mediterranean Sea , Seaweed
9.
Biomolecules ; 12(12)2022 12 02.
Article in English | MEDLINE | ID: mdl-36551235

ABSTRACT

In this review paper, the occurrence in the plant kingdom, the chemophenetic value and the biological activities associated with two specific phenyl-ethanoid glycosides, i.e., leucosceptoside A and leucosceptoside B, were reported. This is the first work ever conducted on such a subject. Analysis of the literature data clearly led to three important conclusions: leucosceptoside A is much more common in plants than leucosceptoside B; leucosceptoside A exerts more biological activities than leucosceptoside B even if nothing can be generally concluded about which one is actually the most potent; neither of these compounds can be used as a chemophenetic marker. These three aspects and more are discussed in more depth in this work.


Subject(s)
Glycosides , Plants , Glycosides/pharmacology , Plant Extracts
10.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142359

ABSTRACT

Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Acetylation , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arsenate Reductases/metabolism , CREB-Binding Protein/metabolism , Ethylenes/metabolism , Histone Acetyltransferases/metabolism , Histones/metabolism , Humans , Mediator Complex/metabolism , p300-CBP Transcription Factors/metabolism
11.
Molecules ; 27(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744845

ABSTRACT

Influenza viruses are transmitted from human to human via airborne droplets and can be transferred through contaminated environmental surfaces. Some works have demonstrated the efficacy of essential oils (EOs) as antimicrobial and antiviral agents, but most of them examined the liquid phases, which are generally toxic for oral applications. In our study, we describe the antiviral activity of Citrus bergamia, Melaleuca alternifolia, Illicium verum and Eucalyptus globulus vapor EOs against influenza virus type A. In the vapor phase, C. bergamia and M. alternifolia strongly reduced viral cytopathic effect without exerting any cytotoxicity. The E. globulus vapor EO reduced viral infection by 78% with no cytotoxicity, while I. verum was not effective. Furthermore, we characterized the EOs and their vapor phase by the head-space gas chromatography-mass spectrometry technique, observing that the major component found in each liquid EO is the same one of the corresponding vapor phases, with the exception of M. alternifolia. To deepen the mechanism of action, the morphological integrity of virus particles was checked by negative staining transmission electron microscopy, showing that they interfere with the lipid bilayer of the viral envelope, leading to the decomposition of membranes. We speculated that the most abundant components of the vapor EOs might directly interfere with influenza virus envelope structures or mask viral structures important for early steps of viral infection.


Subject(s)
Anti-Infective Agents , Eucalyptus , Influenza A Virus, H1N1 Subtype , Melaleuca , Oils, Volatile , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Eucalyptus/chemistry , Melaleuca/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
12.
Pharmaceuticals (Basel) ; 15(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35745594

ABSTRACT

Alzheimer disease is an age-linked neurodegenerative disorder representing one of the greatest medical care challenges of our century. Several drugs are useful in ameliorating the symptoms, even if none could stop or reverse disease progression. The standard approach is represented by the cholinesterase inhibitors (ChEIs) that restore the levels of acetylcholine (ACh) by inhibiting the acetylcholinesterase (AChE). Still, their limited efficacy has prompted researchers to develop new ChEIs that could also reduce the oxidative stress by exhibiting antioxidant properties and by chelating the main metals involved in the disease. Recently, we developed some derivatives constituted by a 2-amino-pyrimidine or a 2-amino-pyridine moiety connected to various aromatic groups by a flexible amino-alkyl linker as new dual inhibitors of AChE and butyrylcholinesterase (BChE). Following our previous studies, in this work we explored the role of the flexible linker by replacing the amino group with an amide or a carbamic group. The most potent compounds showed higher selectivity against BChE in respect to AChE, proving also to possess a weak anti-aggregating activity toward Aß42 and tau and to be able to chelate Cu2+ and Fe3+ ions. Molecular docking and molecular dynamic studies proposed possible binding modes with the enzymes. It is noteworthy that these compounds were predicted as BBB-permeable and showed low cytotoxicity on the human brain cell line.

13.
Pharmaceutics ; 14(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35631629

ABSTRACT

Histoplasma capsulatum is a fungus that causes histoplasmosis. The increased evolution of microbial resistance and the adverse effects of current antifungals help new drugs to emerge. In this work, fifty-four nitrofurans and indoles were tested against the H. capsulatum EH-315 strain. Compounds with a minimum inhibitory concentration (MIC90) equal to or lower than 7.81 µg/mL were selected to evaluate their MIC90 on ATCC G217-B strain and their minimum fungicide concentration (MFC) on both strains. The quantification of membrane ergosterol, cell wall integrity, the production of reactive oxygen species, and the induction of death by necrosis-apoptosis was performed to investigate the mechanism of action of compounds 7, 11, and 32. These compounds could reduce the extracted sterol and induce necrotic cell death, similarly to itraconazole. Moreover, 7 and 11 damaged the cell wall, causing flaws in the contour (11), or changing the size and shape of the fungal cell wall (7). Furthermore, 7 and 32 induced reactive oxygen species (ROS) formation higher than 11 and control. Finally, the cytotoxicity was measured in two models of cell culture, i.e., monolayers (cells are flat) and a three-dimensional (3D) model, where they present a spheroidal conformation. Cytotoxicity assays in the 3D model showed a lower toxicity in the compounds than those performed on cell monolayers. Overall, these results suggest that derivatives of nitrofurans and indoles are promising compounds for the treatment of histoplasmosis.

14.
Pharmaceutics ; 14(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335969

ABSTRACT

Fungal diseases affect more than 1 billion people worldwide. The constant global changes, the advent of new pandemics, and chronic diseases favor the diffusion of fungal pathogens such as Candida, Cryptococcus, Aspergillus, Trichophyton, Histoplasma capsulatum, and Paracoccidioides brasiliensis. In this work, a series of nitrofuran derivatives were synthesized and tested against different fungal species; most of them showed inhibitory activity, fungicide, and fungistatic profile. The minimal inhibitory concentration (MIC90) values for the most potent compounds range from 0.48 µg/mL against H. capsulatum (compound 11) and P. brasiliensis (compounds 3 and 9) to 0.98 µg/mL against Trichophyton rubrum and T. mentagrophytes (compounds 8, 9, 12, 13 and 8, 12, 13, respectively), and 3.9 µg/mL against Candida and Cryptococcus neoformans strains (compounds 1 and 5, respectively). In addition, all compounds showed low toxicity when tested in vitro on lung cell lines (A549 and MRC-5) and in vivo in Caenorhabditis elegans larvae. Many of them showed high selectivity index values. Thus, these studied nitrofuran derivatives proved to be potent against different fungal species, characterized by low toxicity and high selectivity; for these reasons, they may become promising compounds for the treatment of mycoses.

15.
ACS Chem Neurosci ; 12(21): 4090-4112, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34652128

ABSTRACT

A new series of pyrimidine and pyridine diamines was designed as dual binding site inhibitors of cholinesterases (ChEs), characterized by two small aromatic moieties separated by a diaminoalkyl flexible linker. Many compounds are mixed or uncompetitive acetylcholinesterase (AChE) and/or butyrylcholinesterase (BChE) nanomolar inhibitors, with compound 9 being the most active on Electrophorus electricus AChE (EeAChE) (Ki = 0.312 µM) and compound 22 on equine BChE (eqBChE) (Ki = 0.099 µM). Molecular docking and molecular dynamic studies confirmed the interaction mode of our compounds with the enzymatic active site. UV-vis spectroscopic studies showed that these compounds can form complexes with Cu2+ and Fe3+ and that compounds 18, 20, and 30 have antioxidant properties. Interestingly, some compounds were also able to reduce Aß42 and tau aggregation, with compound 28 being the most potent (22.3 and 17.0% inhibition at 100 µM on Aß42 and tau, respectively). Moreover, the most active compounds showed low cytotoxicity on a human brain cell line and they were predicted as BBB-permeable.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Horses , Humans , Molecular Docking Simulation , Molecular Structure , Pyridines , Pyrimidines/pharmacology , Structure-Activity Relationship
16.
Molecules ; 26(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34361654

ABSTRACT

Growing attention to environmental protection leads food industries to adopt a model of "circular economy" applying safe and sustainable technologies to recover, recycle and valorize by-products. Therefore, by-products become raw material for other industries. Tomato processing industry produces significant amounts of by-products, consisting of skins and seeds. Tomato skin is very rich in lycopene, and from its seeds, high nutritional oil can be extracted. Alternative use of the two fractions not only could cut disposal costs but also allow one to extract bioactive compounds and an oil with a high nutritional value. This review focused on the recent advance in extraction of lycopene, whose beneficial effects on health are widely recognized.


Subject(s)
Antioxidants/isolation & purification , Food Handling/methods , Lycopene/isolation & purification , Solanum lycopersicum , Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism
17.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204738

ABSTRACT

Nocodazole is an antineoplastic agent that exerts its effects by depolymerizing microtubules. Herein we report a structural analog of nocodazole, a (1H-pyrrol-1-yl)methyl-1H-benzoimidazole carbamate ester derivative, named RDS 60. We evaluated the antineoplastic properties of RDS 60 in two human head and neck squamous cell carcinoma (HNSCC) cell lines and we found that this compound significantly inhibited replication of both HNSCC cell lines without inducing any important cytotoxic effect on human dermal fibroblasts and human keratinocytes. The treatment of HNSCC cell lines with 1 µM RDS 60 for 24 h stopped development of normal bipolar mitotic spindles and, at the same time, blocked the cell cycle in G2/M phase together with cytoplasmic accumulation of cyclin B1. Consequently, treatment with 2 µM RDS 60 for 24 h induced the activation of apoptosis in both HNSCC cell lines. Additionally, RDS 60 was able to reverse the epithelial-mesenchymal transition and to inhibit cell migration and extracellular matrix infiltration of both HNSCC cell lines. The reported results demonstrate that this compound has a potent effect in blocking cell cycle, inducing apoptosis and inhibiting cell motility and stromal invasion of HNSCC cell lines. Therefore, the ability of RDS 60 to attenuate the malignancy of tumor cells suggests its potential role as an interesting and powerful tool for new approaches in treating HNSCC.

18.
Curr Med Chem ; 28(30): 6146-6178, 2021.
Article in English | MEDLINE | ID: mdl-34225606

ABSTRACT

Multiple combinations of antiretroviral drugs have remarkably improved the treatment of HIV-1 infection. However, life-long treatments and drug resistance are still an open issue that requires continuous efforts for the identification of novel antiviral drugs. BACKGROUND: The reverse transcriptase-associated ribonuclease H (RNase H) hydrolyzes the HIV genome to allow synthesizing viral DNA. Currently, no RNase H inhibitors (RHIs) have reached the clinical phase. Therefore, RNase H can be defined as an attractive target for drug design. OBJECTIVE: Despite the wealth of information available for RNase H domain, the development of RHIs with high specificity and low cellular toxicity has been disappointing. However, it is now becoming increasingly evident that reverse transcriptase is a highly versatile enzyme, undergoing major structural alterations to complete its catalysis, and that exists a close spatial and temporal interplay between reverse transcriptase polymerase and RNase H domains. This review sums up the present challenges in targeting RNase H encompassing the challenges in selectively inhibiting RNase H vs polymerase and/or HIV-1 integrase and the weak antiviral activity of active site inhibitors, probably for a substrate barrier that impedes small molecules to reach the targeted site. Moreover, the focus is given on the most recent progress in the field of medicinal chemistry that has led to the identification of several small molecules as RHIs in the last few years. CONCLUSION: RHIs could be a new class of drugs with a novel mechanism of action highly precious for the treatment of resistant HIV strains.


Subject(s)
HIV Reverse Transcriptase , Ribonuclease H , Antiviral Agents , Drug Design , Humans
19.
J Med Chem ; 64(12): 8579-8598, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34106711

ABSTRACT

Novel anti-HIV agents are still needed to overcome resistance issues, in particular inhibitors acting against novel viral targets. The ribonuclease H (RNase H) function of the reverse transcriptase (RT) represents a validated and promising target, and no inhibitor has reached the clinical pipeline yet. Here, we present rationally designed non-diketo acid selective RNase H inhibitors (RHIs) based on the quinolinone scaffold starting from former dual integrase (IN)/RNase H quinolinonyl diketo acids. Several derivatives were synthesized and tested against RNase H and viral replication and found active at micromolar concentrations. Docking studies within the RNase H catalytic site, coupled with site-directed mutagenesis, and Mg2+ titration experiments demonstrated that our compounds coordinate the Mg2+ cofactor and interact with amino acids of the RNase H domain that are highly conserved among naïve and treatment-experienced patients. In general, the new inhibitors influenced also the polymerase activity of RT but were selective against RNase H vs the IN enzyme.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/enzymology , Quinolones/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Ribonuclease H, Human Immunodeficiency Virus/antagonists & inhibitors , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/metabolism , HeLa Cells , Humans , Magnesium/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Protein Binding , Quinolones/chemical synthesis , Quinolones/metabolism , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/metabolism , Ribonuclease H, Human Immunodeficiency Virus/genetics , Ribonuclease H, Human Immunodeficiency Virus/metabolism , Virus Replication/drug effects
20.
Bioorg Med Chem Lett ; 42: 128087, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33964446

ABSTRACT

Candida albicans, in specific conditions, is responsible of severe invasive systemic candidiasis that are related to its ability to produce biofilm on biological and artificial surfaces. Many studies reported the role of iron in fungal growth and virulence and the ability of metal chelating agents to interfere with C. albicans metabolism, virulence and biofilm formation. Here we report the activity of 3-hydroxy-1,2-dimethyl-4(1H)-pyridinone (deferiprone) derivatives against C. albicans planktonic cells and biofilm. Some of the studied compounds (2b and 3b) were able to chelate Fe(III) and Cu(II), and showed an interesting activity on planktonic cells (MIC50 of 32 µg/mL and 16 µg/mL respectively) and on biofilm formation (BMIC50 of 32 µg/mL and 16 µg/mL respectively) in cultured ATCC 10,231C. albicans; this activity was reduced, in a concentration dependent way, by the addition of Fe(III) and Cu(II) to the culture media. Furthermore, the most active compound 3b showed a low toxicity on Galleria mellonella larvae.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Chelating Agents/pharmacology , Copper/pharmacology , Deferiprone/pharmacology , Iron/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Copper/chemistry , Deferiprone/chemistry , Dose-Response Relationship, Drug , Drug Design , Iron/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...