Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6699): eadd6260, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815015

ABSTRACT

Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-ß and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-ß and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Calcium , Homeostasis , Neuroprotective Agents , Septins , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/drug effects , Cytoskeleton/metabolism , Cytoskeleton/drug effects , Disease Models, Animal , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Septins/metabolism , tau Proteins/metabolism
2.
J Comput Aided Mol Des ; 38(1): 10, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363377

ABSTRACT

Ensuring that computationally designed molecules are chemically reasonable is at best cumbersome. We present a molecule correction algorithm that morphs invalid molecular graphs into structurally related valid analogs. The algorithm is implemented as a tree search, guided by a set of policies to minimize its cost. We showcase how the algorithm can be applied to molecular design, either as a post-processing step or as an integral part of molecule generators.


Subject(s)
Computational Chemistry , Computer-Aided Design , Algorithms
3.
J Cheminform ; 16(1): 23, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414037

ABSTRACT

Cosolvent molecular dynamics (MD) simulations are molecular dynamics simulations used to identify preferable locations of small organic fragments on a protein target. Most cosolvent molecular dynamics workflows make use of only water-soluble fragments, as hydrophobic fragments would cause lipophilic aggregation. To date the two approaches that allow usage of hydrophobic cosolvent molecules are to use a low (0.2 M) concentration of hydrophobic probes, with the disadvantage of a lower sampling speed, or to use force field modifications, with the disadvantage of a difficult and inflexible setup procedure. Here we present a third alternative, that does not suffer from low sampling speed nor from cumbersome preparation procedures. We have built an easy-to-use open source command line tool PART (Plumed Automatic Restraining Tool) to generate a PLUMED file handling all intermolecular restraints to prevent lipophilic aggregation. We have compared restrained and unrestrained cosolvent MD simulations, showing that restraints are necessary to prevent lipophilic aggregation at hydrophobic probe concentrations of 0.5 M. Furthermore, we benchmarked PART generated restraints on a test set of four proteins (Factor-Xa, HIV protease, P38 MAP kinase and RNase A), showing that cosolvent MD with PART generated restraints qualitatively reproduces binding features of cocrystallised ligands.

SELECTION OF CITATIONS
SEARCH DETAIL