Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862514

ABSTRACT

We report on the design, construction, and testing of a high-speed rotor intended for use in hypervelocity microparticle impact studies. The rotor is based on a four-wing design to provide rotational stability and includes flat "paddle" impact surfaces of ∼0.5 cm2 at the tips of each wing. The profile of each wing minimizes the variation in tensile forces at any given rotational speed. The rotor was machined using titanium (grade 5) and operated in high vacuum using magnetically levitated bearings. Initial experiments were run at several speeds up to 100 000 rpm (revolutions per minute), corresponding to a tip speed of 670 m/s. Elongation at the wing tips as a function of rotational speed was measured with a precision of several micrometers using a focused diode laser and found to agree with an elastic modulus of 1.16 GPa for the rotor material. Applications to microparticle impact experiments are discussed.

2.
J Am Soc Mass Spectrom ; 29(7): 1376-1385, 2018 07.
Article in English | MEDLINE | ID: mdl-29623663

ABSTRACT

The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs-x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. Graphical Abstract ᅟ.

3.
J Am Soc Mass Spectrom ; 29(2): 213-222, 2018 02.
Article in English | MEDLINE | ID: mdl-28836122

ABSTRACT

We present a new two-plate linear ion trap mass spectrometer that overcomes both performance-based and miniaturization-related issues with prior designs. Borosilicate glass substrates are patterned with aluminum electrodes on one side and wire-bonded to printed circuit boards. Ions are trapped in the space between two such plates. Tapered ejection slits in each glass plate eliminate issues with charge build-up within the ejection slit and with blocking of ions that are ejected at off-nominal angles. The tapered slit allows miniaturization of the trap features (electrode size, slit width) needed for further reduction of trap size while allowing the use of substrates that are still thick enough to provide ruggedness during handling, assembly, and in-field applications. Plate spacing was optimized during operation using a motorized translation stage. A scan rate of 2300 Th/s with a sample mixture of toluene and deuterated toluene (D8) and xylenes (a mixture of o-, m-, p-) showed narrowest peak widths of 0.33 Th (FWHM). Graphical Abstract ᅟ.

SELECTION OF CITATIONS
SEARCH DETAIL
...