Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 341: 111992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301931

ABSTRACT

Long and very long chain fatty alcohols are produced from their corresponding acyl-CoAs through the activity of fatty acyl reductases (FARs). Fatty alcohols are important components of the cuticle that protects aerial plant organs, and they are metabolic intermediates in the synthesis of the wax esters in the hull of sunflower (Helianthus annuus) seeds. Genes encoding 4 different FARs (named HaFAR2, HaFAR3, HaFAR4 and HaFAR5) were identified using BLAST, and studies showed that four of the genes were expressed in seed hulls. In this study, the structure and location of sunflower FAR proteins were determined. They were also expressed exogenously in Saccharomyces cerevisiae to evaluate their substrate specificity based on the fatty alcohols synthesized by the transformed yeasts. Three of the four enzymes tested showed activity in yeast. HaFAR3 produced C18, C20 and C22 saturated alcohols, whereas HaFAR4 and HaFAR5 produced C24 and C26 saturated alcohols. The involvement of these genes in the synthesis of sunflower seed wax esters was addressed by considering the results obtained.


Subject(s)
Helianthus , Oxidoreductases , Oxidoreductases/metabolism , Helianthus/metabolism , Seeds/metabolism , Fatty Alcohols/metabolism
2.
Sci Total Environ ; 869: 161806, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36707001

ABSTRACT

There is growing interest in the consumption of halophytes due to their excellent nutritional profile and antioxidant properties, and their cultivation offers viable alternatives in the face of irreversible global salinization of soils. Nevertheless, abiotic factors strongly influence their phytochemical composition, and little is known about how growing conditions can produce plants with the best nutritional and functional properties. Crithmum maritimum is an edible halophyte with antioxidant properties and considerable potential for sustainable agriculture in marginal environments. However, it is found naturally in contrasting habitats with variable soil physicochemical properties and the extent to which edaphic factors can influence plant performance, accumulation of phytochemicals and their quality remains unknown. We investigated the influence of soil physicochemical properties (texture, pH, electrical conductivity, organic matter content and mineral element concentrations) on growth and reproductive performance, nutritional traits, and the accumulation of specific metabolites in C. maritimum. Soil, leaf and seed samples were taken from eight C. maritimum populations located on the southern coasts of Spain and Portugal. We found greater vegetative growth and seed production in coarser, sandier soils with lower microelement concentrations. The nutritional traits of leaves varied, with soil organic matter and macronutrient content associated with reduced leaf Na, protein and phenolic (mainly flavonoid) concentrations, whereas soils with lower pH and Fe concentrations, and higher clay content yielded plants with lower leaf Zn concentration and greater accumulation of hydroxycinnamic acids. The nutritional value of the seed oil composition appeared to be enhanced in soils with coarser texture and lower microelement concentrations. The accumulation of specific phenolic compounds in the seed was influenced by a wide range of soil properties including texture, pH and some microelements. These findings will inform the commercial cultivation of C. maritimum, particularly in the economic exploitation of poorly utilized, saline soils.


Subject(s)
Antioxidants , Soil , Antioxidants/metabolism , Soil/chemistry , Salt-Tolerant Plants/metabolism , Agriculture , Phenols , Phytochemicals
3.
Plants (Basel) ; 10(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917507

ABSTRACT

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.

SELECTION OF CITATIONS
SEARCH DETAIL
...