Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 224, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396133

ABSTRACT

Reproductive microbiomes contribute to reproductive health and success in humans. Yet data on reproductive microbiomes, and links to fertility, are absent for most animal species. Characterizing these links is pertinent to endangered species, such as black-footed ferrets (Mustela nigripes), whose populations show reproductive dysfunction and rely on ex-situ conservation husbandry. To understand microbial contributions to animal reproductive success, we used 16S rRNA amplicon sequencing to characterize male (prepuce) and female (vaginal) microbiomes of 59 black-footed ferrets at two ex-situ facilities and in the wild. We analyzed variation in microbiome structure according to markers of fertility such as numbers of viable and non-viable offspring (females) and sperm concentration (males). Ferret vaginal microbiomes showed lower inter-individual variation compared to prepuce microbiomes. In both sexes, wild ferrets harbored potential soil bacteria, perhaps reflecting their fossorial behavior and exposure to natural soil microbiomes. Vaginal microbiomes of ex-situ females that produced non-viable litters had greater phylogenetic diversity and distinct composition compared to other females. In males, sperm concentration correlated with varying abundances of bacterial taxa (e.g., Lactobacillus), mirroring results in humans and highlighting intriguing dynamics. Characterizing reproductive microbiomes across host species is foundational for understanding microbial biomarkers of reproductive success and for augmenting conservation husbandry.


Subject(s)
Ferrets , Semen , Humans , Animals , Male , Female , Phylogeny , RNA, Ribosomal, 16S/genetics , Fertility , Soil
2.
Ecol Evol ; 14(2): e11017, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38362164

ABSTRACT

California's Channel Islands are home to two endemic mammalian carnivores: island foxes (Urocyon littoralis) and island spotted skunks (Spilogale gracilis amphiala). Although it is rare for two insular terrestrial carnivores to coexist, these known competitors persist on both Santa Cruz Island and Santa Rosa Island. We hypothesized that examination of their gut microbial communities would provide insight into the factors that enable this coexistence, as microbial symbionts often reflect host evolutionary history and contemporary ecology. Using rectal swabs collected from island foxes and island spotted skunks sampled across both islands, we generated 16S rRNA amplicon sequencing data to characterize their gut microbiomes. While island foxes and island spotted skunks both harbored the core mammalian microbiome, host species explained the largest proportion of variation in the dataset. We further identified intraspecific variation between island populations, with greater differentiation observed between more specialist island spotted skunk populations compared to more generalist island fox populations. This pattern may reflect differences in resource utilization following fine-scale niche differentiation. It may further reflect evolutionary differences regarding the timing of intraspecific separation. Considered together, this study contributes to the growing catalog of wildlife microbiome studies, with important implications for understanding how eco-evolutionary processes enable the coexistence of terrestrial carnivores-and their microbiomes-in island environments.

3.
Evol Appl ; 17(1): e13634, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38283602

ABSTRACT

Environmental variation can influence the reproductive success of species managed under human care and in the wild, yet the mechanisms underlying this phenomenon remain largely mysterious. Molecular mechanisms such as epigenetic modifiers are important in mediating the timing and progression of reproduction in humans and model organisms, but few studies have linked epigenetic variation to reproductive fitness in wildlife. Here, we investigated epigenetic variation in black-footed ferrets (Mustela nigripes), an endangered North American mammal reliant on ex situ management for survival and persistence in the wild. Despite similar levels of genetic diversity in human-managed and wild-born populations, individuals in ex situ facilities exhibit reproductive problems, such as poor sperm quality. Differences across these settings suggest that an environmentally driven decline in reproductive capacity may be occurring in this species. We examined the role of DNA methylation, one well-studied epigenetic modifier, in this emergent condition. We leveraged blood, testes, and semen samples from male black-footed ferrets bred in ex situ facilities and found tissue-type specificity in DNA methylation across the genome, although 1360 Gene Ontology terms associated with male average litter size shared functions across tissues. We then constructed gene networks of differentially methylated genomic sites associated with three different reproductive phenotypes to explore the putative biological impact of variation in DNA methylation. Sperm gene networks associated with average litter size and sperm count were functionally enriched for candidate genes involved in reproduction, development, and its regulation through transcriptional repression. We propose that DNA methylation plays an important role in regulating these reproductive phenotypes, thereby impacting the fertility of male ex situ individuals. Our results provide information into how DNA methylation may function in the alteration of reproductive pathways and phenotypes in artificial environments. These findings provide early insights to conservation hurdles faced in the protection of this rare species.

4.
J Hered ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37886904

ABSTRACT

The gut microbiome of mammals engages in a dynamic relationship with the body and contributes to numerous physiological processes integral to overall health. Understanding the factors shaping animal-associated bacterial communities is therefore paramount to the maintenance and management in ex situ wildlife populations. Here, we characterized the gut microbiome of 48 endangered black-footed ferrets (Mustela nigripes) housed at Smithsonian's National Zoo and Conservation Biology Institute (Front Royal, Virginia, USA). We collected longitudinal fecal samples from males and females across two distinct reproductive seasons to consider the role of host sex and reproductive physiology in shaping bacterial communities, as measured using 16S rRNA amplicon sequencing. Within each sex, gut microbial composition differed between breeding and non-breeding seasons, with five bacterial taxa emerging as differentially abundant. Between sexes, female and male microbiomes were similar during non-breeding season but significantly different during breeding season, which may result from sex-specific physiological changes associated with breeding. Finally, we found low overall diversity consistent with other mammalian carnivores alongside high relative abundances of potentially pathogenic microbes such as Clostridium, Escherichia, Paeniclostridium, and (to a lesser degree) Enterococcus - all of which have been associated with gastrointestinal or reproductive distress in mammalian hosts, including black-footed ferrets. We recommend further study of these microbes and possible therapeutic interventions to promote more balanced microbial communities. These results have important implications for ex situ management practices that can improve the gut microbial health and long-term viability of black-footed ferrets.

5.
J Hered ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37793153

ABSTRACT

For species of management concern, accurate estimates of inbreeding and associated consequences on reproduction are crucial for predicting their future viability. However, few studies have partitioned this aspect of genetic viability with respect to reproduction in a group-living social mammal. We investigated the contributions of foundation stock lineages, putative fitness consequences of inbreeding, and genetic diversity of the breeding versus non-reproductive segment of the Yellowstone National Park gray wolf population. Our dataset spans 25 years and seven generations since reintroduction, encompassing 152 nuclear families and 329 litters. We found over 87% of the pedigree foundation genomes persisted and report influxes of allelic diversity from two translocated wolves from a divergent source in Montana. As expected for group-living species, mean kinship significantly increased over time but with minimal loss of observed heterozygosity. Strikingly, the reproductive portion of the population carried a significantly lower genome-wide inbreeding coefficients, autozygosity, and more rapid decay for linkage disequilibrium relative to the non-breeding population. Breeding wolves had significantly longer lifespans and lower inbreeding coefficients than non-breeding wolves. Our model revealed that the number of litters was negatively significantly associated with heterozygosity (R=-0.11). Our findings highlight genetic contributions to fitness, and the importance of the reproductively active individuals in a population to counteract loss of genetic variation in a wild, free-ranging social carnivore. It is crucial for managers to mitigate factors that significantly reduce effective population size and genetic connectivity, which supports the dispersion of genetic variation that aids in rapid evolutionary responses to environmental challenges.

6.
Sci Rep ; 13(1): 15464, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726331

ABSTRACT

The critically endangered black rhinoceros (Diceros bicornis; black rhino) experiences extinction threats from poaching in-situ. The ex-situ population, which serves as a genetic reservoir against impending extinction threats, experiences its own threats to survival related to several disease syndromes not typically observed among their wild counterparts. We performed an untargeted metabolomic analysis of serum from 30 ex-situ housed black rhinos (Eastern black rhino, EBR, n = 14 animals; Southern black rhino, SBR, n = 16 animals) and analyzed differences in metabolite profiles between subspecies, sex, and health status (healthy n = 13 vs. diseased n = 14). Of the 636 metabolites detected, several were differentially (fold change > 1.5; p < 0.05) expressed between EBR vs. SBR (40 metabolites), female vs. male (36 metabolites), and healthy vs. diseased (22 metabolites). Results suggest dysregulation of propanoate, amino acid metabolism, and bile acid biosynthesis in the subspecies and sex comparisons. Assessment of healthy versus diseased rhinos indicates involvement of arachidonic acid metabolism, bile acid biosynthesis, and the pentose phosphate pathway in animals exhibiting inflammatory disease syndromes. This study represents the first systematic characterization of the circulating serum metabolome in the black rhinoceros. Findings further implicate mitochondrial and immune dysfunction as key contributors for the diverse disease syndromes reported in ex-situ managed black rhinos.


Subject(s)
Immune System Diseases , Metabolomics , Female , Male , Animals , Syndrome , Perissodactyla , Bile Acids and Salts
7.
Mol Ecol ; 32(4): 892-903, 2023 02.
Article in English | MEDLINE | ID: mdl-36435981

ABSTRACT

Ceruminous gland tumours are highly prevalent in the ear canals of Santa Catalina Island foxes (Urocyon littoralis catalinae). Previous work suggests that tumours may result from a combination of ectoparasites, disruption of the host-associated microbiome, and host immunopathology. More specifically, ear mite infection has been associated with broad-scale microbial dysbiosis marked by secondary bacterial infection with the opportunistic pathogen Staphylococcus pseudintermedius. Together, ear mites and S. pseudintermedius probably sustain chronic inflammation and promote conditions suitable for tumour development. In the present study, we expanded upon this framework by constructing otic microbial community networks for mite-infected and uninfected foxes sampled in 2017-2019. Across sampling years, we observed consistent signatures of microbial dysbiosis in mite-infected ear canals, including reduced microbial diversity and shifted abundance towards S. pseudintermedius. Network analysis further revealed that mite infection disrupts overall community structure. In mite-infected networks, interaction strengths between taxa were generally weaker, and numerous subnetworks disappeared altogether. We also found that two strains of S. pseudintermedius connected to the main network, suggesting that multistrain biofilm formation may be occurring. In contrast, S. pseudintermedius is peripheral in the uninfected network, with its only connections including a second strain of S. pseudintermedius and the possible competitor Acinetobacter rhizosphaerae. Finally, the lineup of potential keystone taxa shifted across disease states. Fusobacteria spp., a carcinogenesis-promoting microbe, assumed a keystone role in the mite-infected community. Considered together, these findings provide insights into how mite infection may destabilize the microbiome and ultimately contribute to tumour development in this island endemic species.


Subject(s)
Microbiota , Mites , Animals , Foxes , Dysbiosis , Microbial Consortia
8.
Ecol Evol ; 11(14): 9472-9488, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306636

ABSTRACT

The host-associated microbiome is an important player in the ecology and evolution of species. Despite growing interest in the medical, veterinary, and conservation communities, there remain numerous questions about the primary factors underlying microbiota, particularly in wildlife. We bridged this knowledge gap by leveraging microbial, genetic, and observational data collected in a wild, pedigreed population of gray wolves (Canis lupus) inhabiting Yellowstone National Park. We characterized body site-specific microbes across six haired and mucosal body sites (and two fecal samples) using 16S rRNA amplicon sequencing. At the phylum level, we found that the microbiome of gray wolves primarily consists of Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria, consistent with previous studies within Mammalia and Canidae. At the genus level, we documented body site-specific microbiota with functions relevant to microenvironment and local physiological processes. We additionally employed observational and RAD sequencing data to examine genetic, demographic, and environmental correlates of skin and gut microbiota. We surveyed individuals across several levels of pedigree relationships, generations, and social groups, and found that social environment (i.e., pack) and genetic relatedness were two primary factors associated with microbial community composition to differing degrees between body sites. We additionally reported body condition and coat color as secondary factors underlying gut and skin microbiomes, respectively. We concluded that gray wolf microbiota resemble similar host species, differ between body sites, and are shaped by numerous endogenous and exogenous factors. These results provide baseline information for this long-term study population and yield important insights into the evolutionary history, ecology, and conservation of wild wolves and their associated microbes.

9.
Evol Appl ; 14(2): 429-445, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33664786

ABSTRACT

Population genetic theory posits that molecular variation buffers against disease risk. Although this "monoculture effect" is well supported in agricultural settings, its applicability to wildlife populations remains in question. In the present study, we examined the genomics underlying individual-level disease severity and population-level consequences of sarcoptic mange infection in a wild population of canids. Using gray wolves (Canis lupus) reintroduced to Yellowstone National Park (YNP) as our focal system, we leveraged 25 years of observational data and biobanked blood and tissue to genotype 76,859 loci in over 400 wolves. At the individual level, we reported an inverse relationship between host genomic variation and infection severity. We additionally identified 410 loci significantly associated with mange severity, with annotations related to inflammation, immunity, and skin barrier integrity and disorders. We contextualized results within environmental, demographic, and behavioral variables, and confirmed that genetic variation was predictive of infection severity. At the population level, we reported decreased genome-wide variation since the initial gray wolf reintroduction event and identified evidence of selection acting against alleles associated with mange infection severity. We concluded that genomic variation plays an important role in disease severity in YNP wolves. This role scales from individual to population levels, and includes patterns of genome-wide variation in support of the monoculture effect and specific loci associated with the complex mange phenotype. Results yielded system-specific insights, while also highlighting the relevance of genomic analyses to wildlife disease ecology, evolution, and conservation.

10.
Mol Ecol ; 29(10): 1764-1775, 2020 05.
Article in English | MEDLINE | ID: mdl-31905256

ABSTRACT

Aggression is a quantitative trait deeply entwined with individual fitness. Mapping the genomic architecture underlying such traits is complicated by complex inheritance patterns, social structure, pedigree information and gene pleiotropy. Here, we leveraged the pedigree of a reintroduced population of grey wolves (Canis lupus) in Yellowstone National Park, Wyoming, USA, to examine the heritability of and the genetic variation associated with aggression. Since their reintroduction, many ecological and behavioural aspects have been documented, providing unmatched records of aggressive behaviour across multiple generations of a wild population of wolves. Using a linear mixed model, a robust genetic relationship matrix, 12,288 single nucleotide polymorphisms (SNPs) and 111 wolves, we estimated the SNP-based heritability of aggression to be 37% and an additional 14% of the phenotypic variation explained by shared environmental exposures. We identified 598 SNP genotypes from 425 grey wolves to resolve a consensus pedigree that was included in a heritability analysis of 141 individuals with SNP genotype, metadata and aggression data. The pedigree-based heritability estimate for aggression is 14%, and an additional 16% of the phenotypic variation was explained by shared environmental exposures. We find strong effects of breeding status and relative pack size on aggression. Through an integrative approach, these results provide a framework for understanding the genetic architecture of a complex trait that influences individual fitness, with linkages to reproduction, in a social carnivore. Along with a few other studies, we show here the incredible utility of a pedigreed natural population for dissecting a complex, fitness-related behavioural trait.


Subject(s)
Aggression , Wolves , Animals , Behavior, Animal , Pedigree , Polymorphism, Single Nucleotide , Reproduction , United States , Wolves/genetics , Wyoming
11.
Mol Ecol ; 29(8): 1463-1475, 2020 04.
Article in English | MEDLINE | ID: mdl-31821650

ABSTRACT

The host-associated microbiome is increasingly recognized as a critical player in health and immunity. Recent studies have shown that disruption of commensal microbial communities can contribute to disease pathogenesis and severity. Santa Catalina Island foxes (Urocyon littoralis catalinae) present a compelling system in which to examine microbial dynamics in wildlife due to their depauperate genomic structure and extremely high prevalence of ceruminous gland tumors. Although the precise cause is yet unknown, infection with ear mites (Otodectes cynotis) has been linked to chronic inflammation, which is associated with abnormal cell growth and tumor development. Given the paucity of genomic variation in these foxes, other dimensions of molecular diversity, such as commensal microbes, may be critical to host response and disease pathology. We characterized the host-associated microbiome across six body sites of Santa Catalina Island foxes, and performed differential abundance testing between healthy and mite-infected ear canals. We found that mite infection was significantly associated with reduced microbial diversity and evenness, with the opportunistic pathogen Staphylococcus pseudintermedius dominating the ear canal community. These results suggest that secondary bacterial infection may contribute to the sustained inflammation associated with tumor development. As the emergence of antibiotic resistant strains remains a concern of the medical, veterinary, and conservation communities, uncovering high relative abundance of S. pseudintermedius provides critical insight into the pathogenesis of this complex system. Through use of culture-independent sequencing techniques, this study contributes to the broader effort of applying a more inclusive understanding of molecular diversity to questions within wildlife disease ecology.


Subject(s)
Microbiota , Mites , Animals , Foxes , Microbiota/genetics , Staphylococcus
12.
Parasit Vectors ; 12(1): 488, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31619277

ABSTRACT

BACKGROUND: Sarcoptic mange is a highly contagious skin disease caused by the ectoparasitic mite Sarcoptes scabiei. Although it afflicts over 100 mammal species worldwide, sarcoptic mange remains a disease obscured by variability at the individual, population and species levels. Amid this variability, it is critical to identify consistent drivers of morbidity, particularly at the skin barrier. METHODS: Using culture-independent next generation sequencing, we characterized the skin microbiome of three species of North American canids: coyotes (Canis latrans), red foxes (Vulpes vulpes) and gray foxes (Urocyon cinereoargenteus). We compared alpha and beta diversity between mange-infected and uninfected canids using the Kruskal-Wallis test and multivariate analysis of variance with permutation. We used analysis of composition of microbes and gneiss balances to perform differential abundance testing between infection groups. RESULTS: We found remarkably consistent signatures of microbial dysbiosis associated with mange infection. Across genera, mange-infected canids exhibited reduced microbial diversity, altered community composition and increased abundance of opportunistic pathogens. The primary bacteria comprising secondary infections were Staphylococcus pseudintermedius, previously associated with canid ear and skin infections, and Corynebacterium spp., previously found among the gut flora of S. scabiei mites and hematophagous arthropods. CONCLUSIONS: This evidence suggests that sarcoptic mange infection consistently alters the canid skin microbiome and facilitates secondary bacterial infection, as seen in humans and other mammals infected with S. scabiei mites. These results provide valuable insights into the pathogenesis of mange at the skin barrier of North American canids and can inspire novel treatment strategies. By adopting a "One Health" framework that considers mites, microbes and the potential for interspecies transmission, we can better elucidate the patterns and processes underlying this ubiquitous and enigmatic disease.


Subject(s)
Coyotes/parasitology , Foxes/parasitology , Microbiota , Sarcoptes scabiei/physiology , Scabies/veterinary , Skin/microbiology , Analysis of Variance , Animals , Biodiversity , Cluster Analysis , Corynebacterium/growth & development , DNA/analysis , Dysbiosis/microbiology , Dysbiosis/veterinary , Female , Male , Morbidity , Multivariate Analysis , North America/epidemiology , RNA, Ribosomal, 16S/genetics , Scabies/epidemiology , Scabies/parasitology , Staphylococcus/growth & development , Statistics, Nonparametric
13.
Ecol Evol ; 9(4): 2046-2060, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847091

ABSTRACT

Urbanization is driving environmental change on a global scale, creating novel environments for wildlife to colonize. Through a combination of stochastic and selective processes, urbanization is also driving evolutionary change. For instance, difficulty in traversing human-modified landscapes may isolate newly established populations from rural sources, while novel selective pressures, such as altered disease risk, toxicant exposure, and light pollution, may further diverge populations through local adaptation. Assessing the evolutionary consequences of urban colonization and the processes underlying them is a principle aim of urban evolutionary ecology. In the present study, we revisited the genetic effects of urbanization on red foxes (Vulpes vulpes) that colonized Zurich, Switzerland. Through use of genome-wide single nucleotide polymorphisms and microsatellite markers linked to the major histocompatibility complex (MHC), we expanded upon a previous neutral microsatellite study to assess population structure, characterize patterns of genetic diversity, and detect outliers associated with urbanization. Our results indicated the presence of one large evolutionary cluster, with substructure evident between geographic sampling areas. In urban foxes, we observed patterns of neutral and functional diversity consistent with founder events and reported increased differentiation between populations separated by natural and anthropogenic barriers. We additionally reported evidence of selection acting on MHC-linked markers and identified outlier loci with putative gene functions related to energy metabolism, behavior, and immunity. We concluded that demographic processes primarily drove patterns of diversity, with outlier tests providing preliminary evidence of possible urban adaptation. This study contributes to our overall understanding of urban colonization ecology and emphasizes the value of combining datasets when examining evolutionary change in an increasingly urban world.

14.
Genes (Basel) ; 9(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518163

ABSTRACT

The threatened eastern wolf is found predominantly in protected areas of central Ontario and has an evolutionary history obscured by interbreeding with coyotes and gray wolves, which challenges its conservation status and subsequent management. Here, we used a population genomics approach to uncover spatial patterns of variation in 281 canids in central Ontario and the Great Lakes region. This represents the first genome-wide single nucleotide polymorphism (SNP) dataset with substantial sample sizes of representative populations. Although they comprise their own genetic cluster, we found evidence of eastern wolf dispersal outside of the boundaries of protected areas, in that the frequency of eastern wolf genetic variation decreases with increasing distance from provincial parks. We detected eastern wolf alleles in admixed coyotes along the northeastern regions of Lake Huron and Lake Ontario. Our analyses confirm the unique genomic composition of eastern wolves, which are mostly restricted to small fragmented patches of protected habitat in central Ontario. We hope this work will encourage an innovative discussion regarding a plan for managed introgression, which could conserve eastern wolf genetic material in any genome regardless of their potential mosaic ancestry composition and the habitats that promote them.

15.
Conserv Biol ; 32(4): 798-807, 2018 08.
Article in English | MEDLINE | ID: mdl-29380417

ABSTRACT

Pathogens pose serious threats to human health, agricultural investment, and biodiversity conservation through the emergence of zoonoses, spillover to domestic livestock, and epizootic outbreaks. As such, wildlife managers are often tasked with mitigating the negative effects of disease. Yet, parasites form a major component of biodiversity that often persist. This is due to logistical challenges of implementing management strategies and to insufficient understanding of host-parasite dynamics. We advocate for an inclusive understanding of molecular diversity in driving parasite infection and variable host disease states in wildlife systems. More specifically, we examine the roles of genetic, epigenetic, and commensal microbial variation in disease pathogenesis. These include mechanisms underlying parasite virulence and host resistance and tolerance, and the development, regulation, and parasite subversion of immune pathways, among other processes. Case studies of devil facial tumor disease in Tasmanian devils (Sarcophilus harrisii) and chytridiomycosis in globally distributed amphibians exemplify the broad range of questions that can be addressed by examining different facets of molecular diversity. For particularly complex systems, integrative molecular analyses present a promising frontier that can provide critical insights necessary to elucidate disease dynamics operating across scales. These insights enable more accurate risk assessment, reconstruction of transmission pathways, discernment of optimal intervention strategies, and development of more effective and ecologically sound treatments that minimize damage to the host population and environment. Such measures are crucial when mitigating threats posed by wildlife disease to humans, domestic animals, and species of conservation concern.


Subject(s)
Conservation of Natural Resources , Marsupialia , Amphibians , Animals , Animals, Wild , Biodiversity , Humans
16.
Ecol Evol ; 8(24): 12641-12655, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619570

ABSTRACT

Range expansion is a widespread biological process, with well-described theoretical expectations associated with the colonization of novel ranges. However, comparatively few empirical studies address the genomic outcomes accompanying the genome-wide consequences associated with the range expansion process, particularly in recent or ongoing expansions. Here, we assess two recent and distinct eastward expansion fronts of a highly mobile carnivore, the coyote (Canis latrans), to investigate patterns of genomic diversity and identify variants that may have been under selection during range expansion. Using a restriction-associated DNA sequencing (RADseq), we genotyped 394 coyotes at 22,935 SNPs and found that overall population structure corresponded to their 19th century historical range and two distinct populations that expanded during the 20th century. Counter to theoretical expectations for populations to bottleneck during range expansions, we observed minimal evidence for decreased genomic diversity across coyotes sampled along either expansion front, which is likely due to hybridization with other Canis species. Furthermore, we identified 12 SNPs, located either within genes or putative regulatory regions, that were consistently associated with range expansion. Of these 12 genes, three (CACNA1C, ALK, and EPHA6) have putative functions related to dispersal, including habituation to novel environments and spatial learning, consistent with the expectations for traits under selection during range expansion. Although coyote colonization of eastern North America is well-publicized, this study provides novel insights by identifying genes associated with dispersal capabilities in coyotes on the two eastern expansion fronts.

SELECTION OF CITATIONS
SEARCH DETAIL
...