Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(8): 501, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542070

ABSTRACT

Gonadal sex determination and differentiation are controlled by somatic support cells of testes (Sertoli cells) and ovaries (granulosa cells). In testes, the epigenetic mechanism that maintains chromatin states responsible for suppressing female sexual differentiation remains unclear. Here, we show that Polycomb repressive complex 1 (PRC1) suppresses a female gene regulatory network in postnatal Sertoli cells. We genetically disrupted PRC1 function in embryonic Sertoli cells after sex determination, and we found that PRC1-depleted postnatal Sertoli cells exhibited defective proliferation and cell death, leading to the degeneration of adult testes. In adult Sertoli cells, PRC1 suppressed specific genes required for granulosa cells, thereby inactivating the female gene regulatory network. Chromatin regions associated with female-specific genes were marked by Polycomb-mediated repressive modifications: PRC1-mediated H2AK119ub and PRC2-mediated H3K27me3. Taken together, this study identifies a critical Polycomb-based mechanism that suppresses ovarian differentiation and maintains Sertoli cell fate in adult testes.


Subject(s)
Histones , Polycomb Repressive Complex 1 , Female , Male , Humans , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Histones/genetics , Histones/metabolism , Testis/metabolism , Gene Regulatory Networks , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Chromatin , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Cell Differentiation/genetics
2.
Nat Commun ; 14(1): 1439, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922518

ABSTRACT

A growing body of evidence demonstrates that fetal-derived tissue-resident macrophages have developmental functions. It has been proposed that macrophages promote testicular functions, but which macrophage populations are involved is unclear. Previous studies showed that macrophages play critical roles in fetal testis morphogenesis and described two adult testicular macrophage populations, interstitial and peritubular. There has been debate regarding the hematopoietic origins of testicular macrophages and whether distinct macrophage populations promote specific testicular functions. Here our hematopoietic lineage-tracing studies in mice show that yolk-sac-derived macrophages comprise the earliest testicular macrophages, while fetal hematopoietic stem cells (HSCs) generate monocytes that colonize the gonad during a narrow time window in a Sertoli-cell-dependent manner and differentiate into adult testicular macrophages. Finally, we show that yolk-sac-derived versus HSC-derived macrophages have distinct functions during testis morphogenesis, while interstitial macrophages specifically promote adult Leydig cell steroidogenesis. Our findings provide insight into testicular macrophage origins and their tissue-specific roles.


Subject(s)
Macrophages , Testis , Male , Animals , Mice , Monocytes , Hematopoietic Stem Cells , Fetus
3.
Front Cell Dev Biol ; 11: 1339385, 2023.
Article in English | MEDLINE | ID: mdl-38250327

ABSTRACT

Embryonic development and adult physiology are dependent on the action of steroid hormones. In particular, the reproductive system is reliant on hormonal signaling to promote gonadal function and to ensure fertility. Here we will describe hormone receptor functions and their impacts on testicular function, focusing on a specific group of essential hormones: androgens, estrogens, progesterone, cortisol, and aldosterone. In addition to focusing on hormone receptor function and localization within the testis, we will highlight the effects of altered receptor signaling, including the consequences of reduced and excess signaling activity. These hormones act through various cellular pathways and receptor types, emphasizing the need for a multifaceted research approach to understand their critical roles in testicular function. Hormones exhibit intricate interactions with each other, as evidenced, for example, by the antagonistic effects of progesterone on mineralocorticoid receptors and cortisol's impact on androgens. In light of research findings in the field demonstrating an intricate interplay between hormones, a systems biology approach is crucial for a nuanced understanding of this complex hormonal network. This review can serve as a resource for further investigation into hormonal support of male reproductive health.

4.
Proc Natl Acad Sci U S A ; 119(41): e2213026119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36194632

ABSTRACT

Supporting cells of the ovary, termed granulosa cells, are essential for ovarian differentiation and oogenesis by providing a nurturing environment for oocyte maintenance and maturation. Granulosa cells are specified in the fetal and perinatal ovary, and sufficient numbers of granulosa cells are critical for the establishment of follicles and the oocyte reserve. Identifying the cellular source from which granulosa cells and their progenitors are derived is an integral part of efforts to understand basic ovarian biology and the etiology of female infertility. In particular, the contribution of mesenchymal cells, especially perivascular cells, to ovarian development is poorly understood but is likely to be a source of new information regarding ovarian function. Here we have identified a cell population in the fetal ovary, which is a Nestin-expressing perivascular cell type. Using lineage tracing and ex vivo organ culture methods, we determined that perivascular cells are multipotent progenitors that contribute to granulosa, thecal, and pericyte cell lineages in the ovary. Maintenance of these progenitors is dependent on ovarian vasculature, likely reliant on endothelial-mesenchymal Notch signaling interactions. Depletion of Nestin+ progenitors resulted in a disruption of granulosa cell specification and in an increased number of germ cell cysts that fail to break down, leading to polyovular ovarian follicles. These findings highlight a cell population in the ovary and uncover a key role for vasculature in ovarian differentiation, which may lead to insights into the origins of female gonad dysgenesis and infertility.


Subject(s)
Ovary , Pericytes , Animals , Female , Granulosa Cells/metabolism , Nestin/genetics , Nestin/metabolism , Oogenesis/physiology , Ovarian Follicle , Ovary/metabolism
5.
Front Endocrinol (Lausanne) ; 13: 894437, 2022.
Article in English | MEDLINE | ID: mdl-35573990

ABSTRACT

Steroidogenesis is an essential biological process for embryonic development, reproduction, and adult health. While specific glandular cells, such as Leydig cells in the testis, are traditionally known to be the principal players in steroid hormone production, there are other cell types that contribute to the process of steroidogenesis. In particular, immune cells are often an important component of the cellular niche that is required for the production of steroid hormones. For several decades, studies have reported that testicular macrophages and Leydig cells are intimately associated and exhibit a dependency on the other cell type for their proper development; however, the mechanisms that underlie the functional relationship between macrophages and Leydig cells are unclear. Beyond the testis, in certain instances immune cells themselves, such as certain types of lymphocytes, are capable of steroid hormone production, thus highlighting the complexity and diversity that underlie steroidogenesis. In this review we will describe how immune cells are critical regulators of steroidogenesis in the testis and in extra-glandular locations, as well as discuss how this area of research offers opportunities to uncover new insights into steroid hormone production.


Subject(s)
Testis , Testosterone , Female , Humans , Leydig Cells , Macrophages/metabolism , Male , Pregnancy , Steroids , Testis/metabolism , Testosterone/metabolism
7.
FEBS J ; 289(9): 2386-2408, 2022 05.
Article in English | MEDLINE | ID: mdl-33774913

ABSTRACT

Gonad development is a highly regulated process that coordinates cell specification and morphogenesis to produce sex-specific organ structures that are required for fertility, such as testicular seminiferous tubules and ovarian follicles. While sex determination occurs within specialized gonadal supporting cells, sexual differentiation is evident throughout the entire organ, including within the interstitial compartment, which contains immune cells and vasculature. While immune and vascular cells have been traditionally appreciated for their supporting roles during tissue growth and homeostasis, an increasing body of evidence supports the idea that these cell types are critical drivers of sexually dimorphic morphogenesis of the gonad. Myeloid immune cells, such as macrophages, are essential for multiple aspects of gonadogenesis and fertility, including for forming and maintaining gonadal vasculature in both sexes at varying stages of life. While vasculature is long known for supporting organ growth and serving as an export mechanism for gonadal sex steroids in utero, it is also an important component of fetal testicular morphogenesis and differentiation; additionally, it is vital for ovarian corpus luteal function and maintenance of pregnancy. These findings point toward a new paradigm in which immune cells and blood vessels are integral components of sexual differentiation and organogenesis. In this review, we discuss the state of the field regarding the diverse roles of immune and vascular cells during organogenesis of the testis and ovary and highlight outstanding questions in the field that could stimulate new research into these previously underappreciated constituents of the gonad.


Subject(s)
Ovary , Testis , Female , Gonads , Humans , Male , Organogenesis , Pregnancy , Sex Differentiation , Testis/metabolism
8.
Cell Rep ; 37(4): 109885, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34706238

ABSTRACT

Sertoli cells are highly polarized testicular supporting cells that simultaneously nurture multiple stages of germ cells during spermatogenesis. Proper localization of polarity protein complexes within Sertoli cells, including those responsible for blood-testis barrier formation, is vital for spermatogenesis. However, the mechanisms and developmental timing that underlie Sertoli cell polarity are poorly understood. We investigate this aspect of testicular function by conditionally deleting Cdc42, encoding a Rho GTPase involved in regulating cell polarity, specifically in Sertoli cells. Sertoli Cdc42 deletion leads to increased apoptosis and disrupted polarity of juvenile and adult testes but does not affect fetal and postnatal testicular development. The onset of the first wave of spermatogenesis occurs normally, but it fails to progress past round spermatid stages, and by young adulthood, conditional knockout males exhibit a complete loss of spermatogenic cells. These findings demonstrate that Cdc42 is essential for Sertoli cell polarity and for maintaining steady-state sperm production.


Subject(s)
Sertoli Cells/enzymology , Spermatids/enzymology , Spermatogenesis , cdc42 GTP-Binding Protein/metabolism , Animals , Male , Mice , cdc42 GTP-Binding Protein/genetics
9.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074765

ABSTRACT

Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.


Subject(s)
Genitalia, Male/metabolism , Sex Differentiation , Acetylation , Androgens , Animals , CRISPR-Cas Systems , Female , Gene Expression Regulation , Histones/metabolism , MafB Transcription Factor , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Receptors, Androgen , Transcription Factors/metabolism
10.
Biol Reprod ; 105(4): 958-975, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34007995

ABSTRACT

Testis differentiation is initiated when Sry in pre-Sertoli cells directs the gonad toward a male-specific fate. Sertoli cells are essential for testis development, but cell types within the interstitial compartment, such as immune and endothelial cells, are also critical for organ formation. Our previous work implicated macrophages in fetal testis morphogenesis, but little is known about genes underlying immune cell development during organogenesis. Here, we examine the role of the immune-associated genes Mafb and Maf in mouse fetal gonad development, and we demonstrate that deletion of these genes leads to aberrant hematopoiesis manifested by supernumerary gonadal monocytes. Mafb; Maf double knockout embryos underwent initial gonadal sex determination normally, but exhibited testicular hypervascularization, testis cord formation defects, Leydig cell deficit, and a reduced number of germ cells. In general, Mafb and Maf alone were dispensable for gonad development; however, when both genes were deleted, we observed significant defects in testicular morphogenesis, indicating that Mafb and Maf work redundantly during testis differentiation. These results demonstrate previously unappreciated roles for Mafb and Maf in immune and vascular development and highlight the importance of interstitial cells in gonadal differentiation.


Subject(s)
MafB Transcription Factor/genetics , Myeloid Cells/metabolism , Organogenesis/genetics , Proto-Oncogene Proteins c-maf/genetics , Testis/embryology , Animals , Embryo, Mammalian/embryology , MafB Transcription Factor/metabolism , Male , Mice , Proto-Oncogene Proteins c-maf/metabolism
11.
Cell Rep ; 31(2): 107513, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294451

ABSTRACT

Sertoli cells are supporting cells of the testicular seminiferous tubules, which provide a nurturing environment for spermatogenesis. Adult Sertoli cells are polarized so that they can simultaneously support earlier-stage spermatogenic cells (e.g., spermatogonia) basally and later-stage cells (e.g., spermatids) apically. To test the consequences of disrupting cell polarity in Sertoli cells, we perform a Sertoli-specific conditional deletion of Rac1, which encodes a Rho GTPase required for apicobasal cell polarity. Rac1 conditional knockout adults exhibit spermatogenic arrest at the round spermatid stage, with severe disruption of Sertoli cell polarity, and show increased germline and Sertoli cell apoptosis. Thus, Sertoli Rac1 function is critical for the progression of spermatogenesis but, surprisingly, is dispensable for fetal testicular development, adult maintenance of undifferentiated spermatogonia, and meiotic entry. Our data indicate that Sertoli Rac1 function is required only for certain aspects of spermatogenesis and reveal that there are distinct requirements for cell polarity during cellular differentiation.


Subject(s)
Neuropeptides/metabolism , Sertoli Cells/metabolism , Testis/cytology , rac1 GTP-Binding Protein/metabolism , Animals , Cell Differentiation/physiology , Cell Polarity/physiology , Male , Mice , Mice, Inbred C57BL , Neuropeptides/genetics , Seminiferous Tubules/cytology , Sertoli Cells/cytology , Sertoli Cells/pathology , Spermatids/physiology , Spermatogenesis/genetics , Spermatogenesis/physiology , Spermatogonia/physiology , Testis/growth & development , rac1 GTP-Binding Protein/genetics
13.
Nat Commun ; 9(1): 4519, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375389

ABSTRACT

Androgens responsible for male sexual differentiation in utero are produced by Leydig cells in the fetal testicular interstitium. Leydig cells rarely proliferate and, hence, rely on constant differentiation of interstitial progenitors to increase their number during fetal development. The cellular origins of fetal Leydig progenitors and how they are maintained remain largely unknown. Here we show that Notch-active, Nestin-positive perivascular cells in the fetal testis are a multipotent progenitor population, giving rise to Leydig cells, pericytes, and smooth muscle cells. When vasculature is disrupted, perivascular progenitor cells fail to be maintained and excessive Leydig cell differentiation occurs, demonstrating that blood vessels are a critical component of the niche that maintains interstitial progenitor cells. Additionally, our data strongly supports a model in which fetal Leydig cell differentiation occurs by at least two different means, with each having unique progenitor origins and distinct requirements for Notch signaling to maintain the progenitor population.


Subject(s)
Cell Differentiation , Fetus/cytology , Leydig Cells/cytology , Multipotent Stem Cells/cytology , Myocytes, Smooth Muscle/cytology , Pericytes/cytology , Stem Cell Niche , Testis/cytology , Animals , Male , Mice , Multipotent Stem Cells/metabolism , Nestin/metabolism , Receptors, Notch/metabolism , Signal Transduction , Testis/blood supply
14.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29653926

ABSTRACT

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Subject(s)
Fibronectins/antagonists & inhibitors , Heart Failure/drug therapy , Myocardial Reperfusion Injury/drug therapy , Myofibroblasts/drug effects , Peptide Fragments/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Collagen/metabolism , Disease Models, Animal , Fibronectins/genetics , Fibronectins/metabolism , Fibrosis , Focal Adhesion Kinase 1/metabolism , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Integrin beta1/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Neutrophil Infiltration/drug effects , Phosphorylation , Polymerization , Signal Transduction/drug effects
15.
Arterioscler Thromb Vasc Biol ; 38(3): 636-644, 2018 03.
Article in English | MEDLINE | ID: mdl-29348122

ABSTRACT

OBJECTIVE: Hematopoietic-derived cells have been reported in heart valves but remain poorly characterized. Interestingly, recent studies reveal infiltration of leukocytes and increased macrophages in human myxomatous mitral valves. Nevertheless, timing and contribution of macrophages in normal valves and myxomatous valve disease are still unknown. The objective is to characterize leukocytes during postnatal heart valve maturation and identify macrophage subsets in myxomatous valve disease. APPROACH AND RESULTS: Leukocytes are detected in heart valves after birth, and their numbers increase during postnatal valve development. Flow cytometry and immunostaining analysis indicate that almost all valve leukocytes are myeloid cells, consisting of at least 2 differentially localized macrophage subsets and dendritic cells. Beginning a week after birth, increased numbers of CCR2+ (C-C chemokine receptor type 2) macrophages are present, consistent with infiltrating populations of monocytes, and macrophages are localized in regions of biomechanical stress in the valve leaflets. Valve leukocytes maintain expression of CD (cluster of differentiation) 45 and do not contribute to significant numbers of endothelial or interstitial cells. Macrophage lineages were examined in aortic and mitral valves of Axin2 KO (knockout) mice that exhibit myxomatous features. Infiltrating CCR2+ monocytes and expansion of CD206-expressing macrophages are localized in regions where modified heavy chain hyaluronan is observed in myxomatous valve leaflets. Similar colocalization of modified hyaluronan and increased numbers of macrophages were observed in human myxomatous valve disease. CONCLUSIONS: Our study demonstrates the heterogeneity of myeloid cells in heart valves and highlights an alteration of macrophage subpopulations, notably an increased presence of infiltrating CCR2+ monocytes and CD206+ macrophages, in myxomatous valve disease.


Subject(s)
Cell Lineage , Extracellular Matrix/pathology , Heart Valve Diseases/pathology , Heart Valves/pathology , Macrophages/pathology , Age Factors , Aged , Animals , Axin Protein/genetics , Axin Protein/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Dendritic Cells/metabolism , Dendritic Cells/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Gene Expression Regulation, Developmental , Genes, Reporter , Heart Valve Diseases/genetics , Heart Valve Diseases/metabolism , Heart Valves/metabolism , Humans , Hyaluronic Acid/metabolism , Lectins, C-Type/metabolism , Leukocytes/metabolism , Leukocytes/pathology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Macrophages/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Mutation , Phenotype , Receptors, CCR2/metabolism , Receptors, Cell Surface/metabolism
16.
Development ; 144(9): 1607-1618, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28360133

ABSTRACT

During early gonadogenesis, proliferating cells in the coelomic epithelium (CE) give rise to most of the somatic cells in both XX and XY gonads. Previous dye-labeling experiments showed that a single CE cell could give rise to additional CE cells and to both supporting and interstitial cell lineages, implying that cells in the CE domain are multipotent progenitors, and suggesting that an asymmetric division is involved in the acquisition of gonadal cell fates. We found that NUMB is asymmetrically localized in CE cells, suggesting that it might be involved. To test this hypothesis, we conditionally deleted Numb on a Numbl mutant background just prior to gonadogenesis. Mutant gonads showed a loss of cell polarity in the surface epithelial layers, large interior cell patches expressing the undifferentiated cell marker LHX9, and a loss of differentiated cells in somatic cell lineages. These results indicate that NUMB is necessary for establishing polarity in CE cells, and that asymmetric divisions resulting from CE polarity are required for commitment to differentiated somatic cell fates. Surprisingly, germ cells, which do not arise from the CE, were also affected in mutants, which may be a direct or indirect effect of loss of Numb.


Subject(s)
Cell Lineage , Gonads/embryology , Gonads/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Organogenesis , Animals , Asymmetric Cell Division/drug effects , Cell Count , Cell Cycle/drug effects , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Lineage/drug effects , Cell Polarity/drug effects , Cell Polarity/genetics , Cells, Cultured , Dipeptides/pharmacology , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Epithelium/embryology , Epithelium/metabolism , Female , Gene Expression Regulation, Developmental/drug effects , Gonads/drug effects , Gonads/pathology , Intracellular Signaling Peptides and Proteins , LIM-Homeodomain Proteins/metabolism , Leydig Cells/cytology , Leydig Cells/drug effects , Leydig Cells/metabolism , Male , Membrane Proteins/genetics , Mice , Models, Biological , Mutation/genetics , Nerve Tissue Proteins/genetics , Organogenesis/drug effects , Organogenesis/genetics , Phenotype , Receptors, Notch/genetics , Receptors, Notch/metabolism , Sertoli Cells/cytology , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism
17.
Semin Reprod Med ; 35(2): 139-146, 2017 03.
Article in English | MEDLINE | ID: mdl-28278531

ABSTRACT

Specification of mouse primordial germ cells (PGCs), the precursors of sperm and eggs, involves three major molecular events: repression of the somatic program, reacquisition of pluripotency, and reprogramming to a unique epigenetic ground state. Gene knockout studies in mouse models, along with global transcriptome analyses, have revealed the key signaling pathways and transcription factors essential for PGC specification. Knowledge obtained from these studies has been utilized extensively to develop robust in vitro PGC induction models not only in mice but also in humans. These models have, in turn, formed the basis for a detailed understanding of the signaling pathways and epigenetic dynamics during in vivo PGC specification and development. Recapitulation of human PGC specification in culture is of tremendous significance for understanding the mechanisms of human germ cell development in normal and disease states and has implications for addressing germ-cell-based causes of infertility.


Subject(s)
Cell Differentiation , Cell Lineage , Embryonic Stem Cells/physiology , Ovum/physiology , Pluripotent Stem Cells/physiology , Spermatozoa/physiology , Animals , Body Patterning , Cellular Reprogramming , DNA Methylation , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Ovum/metabolism , Phenotype , Pluripotent Stem Cells/metabolism , Signal Transduction , Spermatozoa/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Biol Reprod ; 96(5): 1060-1070, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28339687

ABSTRACT

The observation of pups born from recipient and donor mice after ovariectomy followed by ovarian transplant poses the interesting possibility of an extraovarian source of oocytes. However, whether mammalian adult oocytes reside in extragonadal tissues remains elusive. Using transgenic fluorescent reporter mice and transplantation surgeries, we demonstrate the presence of both donor- and recipient-derived corpora lutea and recovery of both donor- and recipient-derived offspring from ovariectomized mice after transplantation of donor ovaries. A potential region for extraovarian oocytes is the hilum, a ligament-like structure between the ovary and the reproductive tract. Immunofluorescent confocal microscopy of mouse ovaries and reproductive tracts revealed that a population of primordial follicles resides outside the ovary within the hilum. Ovariectomy-only controls confirmed that oocytes remain in the recipient hilum after surgery. These results provide evidence that the hilum is a reserve source of follicles, which likely return to the ovary for maturation and ovulation. By identifying a new follicle reservoir, our study addresses a long-standing question in reproductive biology and contributes to new conceptual knowledge about ovarian function and fertility.


Subject(s)
Fertility/physiology , Oocytes/physiology , Ovary/cytology , Ovary/physiology , Animals , Female , Genotype , Germ Cells , Gonads/cytology , Hematopoietic Stem Cell Transplantation , Mice , Mice, Inbred C57BL , Ovarian Follicle/physiology , Ovariectomy , Ovary/transplantation , Ovulation , Pregnancy
19.
Reproduction ; 153(4): R151-R162, 2017 04.
Article in English | MEDLINE | ID: mdl-28115580

ABSTRACT

Intricate cellular and molecular interactions ensure that spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells and vasculature) and peritubular (peritubular macrophages and peritubular myoid cells) cells and their role in regulating the SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony-stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce the proliferation or differentiation of SSCs respectively. Vasculature influences SSC dynamics through CSF1 and vascular endothelial growth factor (VEGF) and by regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line-derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility.


Subject(s)
Leydig Cells/cytology , Spermatogonia/physiology , Stem Cells/physiology , Animals , Cell Differentiation , Humans , Male , Stem Cells/cytology
20.
Results Probl Cell Differ ; 58: 101-34, 2016.
Article in English | MEDLINE | ID: mdl-27300177

ABSTRACT

Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.


Subject(s)
Androgens/metabolism , Cell Differentiation , Leydig Cells/metabolism , Ovary/metabolism , Testis/metabolism , Theca Cells/metabolism , Animals , Female , Humans , Leydig Cells/cytology , Male , Ovary/cytology , Testis/cytology , Theca Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...