Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38645052

ABSTRACT

Genomic scientists have long been promised cheaper DNA sequencing, but deep whole genomes are still costly, especially when considered for large cohorts in population-level studies. More affordable options include microarrays + imputation, whole exome sequencing (WES), or low-pass whole genome sequencing (WGS) + imputation. WES + array + imputation has recently been shown to yield 99% of association signals detected by WGS. However, a method free from ascertainment biases of arrays or the need for merging different data types that still benefits from deeper exome coverage to enhance novel coding variant detection does not exist. We developed a new, combined, "Blended Genome Exome" (BGE) in which a whole genome library is generated, an aliquot of that genome is amplified by PCR, the exome regions are selected and enriched, and the genome and exome libraries are combined back into a single tube for sequencing (33% exome, 67% genome). This creates a single CRAM with a low-coverage whole genome (2-3x) combined with a higher coverage exome (30-40x). This BGE can be used for imputing common variants throughout the genome as well as for calling rare coding variants. We tested this new method and observed >99% r 2 concordance between imputed BGE data and existing 30x WGS data for exome and genome variants. BGE can serve as a useful and cost-efficient alternative sequencing product for genomic researchers, requiring ten-fold less sequencing compared to 30x WGS without the need for complicated harmonization of array and sequencing data.

2.
Cell ; 185(3): 485-492.e10, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051367

ABSTRACT

An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Contact Tracing/methods , Disease Outbreaks , Female , Genome, Viral , Humans , Infant , Infant, Newborn , Male , Massachusetts/epidemiology , Middle Aged , Molecular Epidemiology , Phylogeny , SARS-CoV-2/classification , Vaccination , Whole Genome Sequencing , Young Adult
3.
medRxiv ; 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34704102

ABSTRACT

Multiple summer events, including large indoor gatherings, in Provincetown, Massachusetts (MA), in July 2021 contributed to an outbreak of over one thousand COVID-19 cases among residents and visitors. Most cases were fully vaccinated, many of whom were also symptomatic, prompting a comprehensive public health response, motivating changes to national masking recommendations, and raising questions about infection and transmission among vaccinated individuals. To characterize the outbreak and the viral population underlying it, we combined genomic and epidemiological data from 467 individuals, including 40% of known outbreak-associated cases. The Delta variant accounted for 99% of sequenced outbreak-associated cases. Phylogenetic analysis suggests over 40 sources of Delta in the dataset, with one responsible for a single cluster containing 83% of outbreak-associated genomes. This cluster was likely not the result of extensive spread at a single site, but rather transmission from a common source across multiple settings over a short time. Genomic and epidemiological data combined provide strong support for 25 transmission events from, including many between, fully vaccinated individuals; genomic data alone provides evidence for an additional 64. Together, genomic epidemiology provides a high-resolution picture of the Provincetown outbreak, revealing multiple cases of transmission of Delta from fully vaccinated individuals. However, despite its magnitude, the outbreak was restricted in its onward impact in MA and the US, likely due to high vaccination rates and a robust public health response.

4.
Clin Cancer Res ; 26(11): 2556-2564, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32170028

ABSTRACT

PURPOSE: Existing cell-free DNA (cfDNA) methods lack the sensitivity needed for detecting minimal residual disease (MRD) following therapy. We developed a test for tracking hundreds of patient-specific mutations to detect MRD with a 1,000-fold lower error rate than conventional sequencing. EXPERIMENTAL DESIGN: We compared the sensitivity of our approach to digital droplet PCR (ddPCR) in a dilution series, then retrospectively identified two cohorts of patients who had undergone prospective plasma sampling and clinical data collection: 16 patients with ER+/HER2- metastatic breast cancer (MBC) sampled within 6 months following metastatic diagnosis and 142 patients with stage 0 to III breast cancer who received curative-intent treatment with most sampled at surgery and 1 year postoperative. We performed whole-exome sequencing of tumors and designed individualized MRD tests, which we applied to serial cfDNA samples. RESULTS: Our approach was 100-fold more sensitive than ddPCR when tracking 488 mutations, but most patients had fewer identifiable tumor mutations to track in cfDNA (median = 57; range = 2-346). Clinical sensitivity was 81% (n = 13/16) in newly diagnosed MBC, 23% (n = 7/30) at postoperative and 19% (n = 6/32) at 1 year in early-stage disease, and highest in patients with the most tumor mutations available to track. MRD detection at 1 year was strongly associated with distant recurrence [HR = 20.8; 95% confidence interval, 7.3-58.9]. Median lead time from first positive sample to recurrence was 18.9 months (range = 3.4-39.2 months). CONCLUSIONS: Tracking large numbers of individualized tumor mutations in cfDNA can improve MRD detection, but its sensitivity is driven by the number of tumor mutations available to track.


Subject(s)
Breast Neoplasms/pathology , Circulating Tumor DNA/genetics , Estrogen Receptor alpha/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm, Residual/pathology , Adult , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Circulating Tumor DNA/blood , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/therapy , Neoplasm, Residual/blood , Neoplasm, Residual/genetics , Neoplasm, Residual/therapy , Prognosis , Prospective Studies , Retrospective Studies , Survival Rate
5.
J Mol Diagn ; 18(4): 566-71, 2016 07.
Article in English | MEDLINE | ID: mdl-27157321

ABSTRACT

Mucin-1 kidney disease, previously described as medullary cystic kidney disease type 1 (MCKD1, OMIM 174000), is an autosomal dominant tubulointerstitial kidney disease recently shown to be caused by a single-base insertion within the variable number tandem repeat region of the MUC1 gene. Because of variable age of disease onset and often subtle signs and symptoms, clinical diagnosis of mucin-1 kidney disease and differentiation from other forms of hereditary kidney disease have been difficult. The causal insertion resides in a variable number tandem repeat region with high GC content, which has made detection by standard next-generation sequencing impossible to date. The inherently difficult nature of this mutation required an alternative method for routine detection and clinical diagnosis of the disease. We therefore developed and validated a mass spectrometry-based probe extension assay with a series of internal controls to detect the insertion event using 24 previously characterized positive samples from patients with mucin-1 kidney disease and 24 control samples known to be wild type for the variant. Validation results indicate an accurate and reliable test for clinically establishing the molecular diagnosis of mucin-1 kidney disease with 100% sensitivity and specificity across 275 tests called.


Subject(s)
Mass Spectrometry/methods , Molecular Diagnostic Techniques , Mucin-1/genetics , Mutation , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , Genotype , Humans , Mass Spectrometry/standards , Reproducibility of Results , Sensitivity and Specificity , Workflow
6.
Cancer Discov ; 4(11): 1326-41, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25186949

ABSTRACT

UNLABELLED: Pediatric Ewing sarcoma is characterized by the expression of chimeric fusions of EWS and ETS family transcription factors, representing a paradigm for studying cancers driven by transcription factor rearrangements. In this study, we describe the somatic landscape of pediatric Ewing sarcoma. These tumors are among the most genetically normal cancers characterized to date, with only EWS-ETS rearrangements identified in the majority of tumors. STAG2 loss, however, is present in more than 15% of Ewing sarcoma tumors; occurs by point mutation, rearrangement, and likely nongenetic mechanisms; and is associated with disease dissemination. Perhaps the most striking finding is the paucity of mutations in immediately targetable signal transduction pathways, highlighting the need for new therapeutic approaches to target EWS-ETS fusions in this disease. SIGNIFICANCE: We performed next-generation sequencing of Ewing sarcoma, a pediatric cancer involving bone, characterized by expression of EWS-ETS fusions. We found remarkably few mutations. However, we discovered that loss of STAG2 expression occurs in 15% of tumors and is associated with metastatic disease, suggesting a potential genetic vulnerability in Ewing sarcoma.


Subject(s)
Antigens, Nuclear/genetics , Bone Neoplasms/genetics , Sarcoma, Ewing/genetics , Antigens, Nuclear/metabolism , Bone Neoplasms/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Child , DNA, Neoplasm/genetics , Female , Gene Rearrangement , Genomics , Humans , Male , Mutation , Sarcoma, Ewing/metabolism , Sequence Analysis, DNA
7.
Nat Genet ; 45(3): 299-303, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23396133

ABSTRACT

Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (∼1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.


Subject(s)
Minisatellite Repeats/genetics , Mucin-1/genetics , Mutation , Polycystic Kidney, Autosomal Dominant , Cytosine/metabolism , Female , Genetic Linkage , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Male , Mucin-1/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology
8.
J Clin Invest ; 122(12): 4680-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23114594

ABSTRACT

Congenital diarrheal disorders (CDDs) are a collection of rare, heterogeneous enteropathies with early onset and often severe outcomes. Here, we report a family of Ashkenazi Jewish descent, with 2 out of 3 children affected by CDD. Both affected children presented 3 days after birth with severe, intractable diarrhea. One child died from complications at age 17 months. The second child showed marked improvement, with resolution of most symptoms at 10 to 12 months of age. Using exome sequencing, we identified a rare splice site mutation in the DGAT1 gene and found that both affected children were homozygous carriers. Molecular analysis of the mutant allele indicated a total loss of function, with no detectable DGAT1 protein or activity produced. The precise cause of diarrhea is unknown, but we speculate that it relates to abnormal fat absorption and buildup of DGAT substrates in the intestinal mucosa. Our results identify DGAT1 loss-of-function mutations as a rare cause of CDDs. These findings prompt concern for DGAT1 inhibition in humans, which is being assessed for treating metabolic and other diseases.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Diarrhea, Infantile/diagnosis , Animals , Cells, Cultured , DNA Mutational Analysis , Diarrhea, Infantile/congenital , Diarrhea, Infantile/genetics , Fatal Outcome , Female , Genetic Association Studies , Humans , Infant , Infant, Newborn , Male , Mice , Pedigree , Protein Stability , RNA Splice Sites/genetics
9.
Cancer Discov ; 2(1): 82-93, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22585170

ABSTRACT

UNLABELLED: Knowledge of "actionable" somatic genomic alterations present in each tumor (e.g., point mutations, small insertions/deletions, and copy-number alterations that direct therapeutic options) should facilitate individualized approaches to cancer treatment. However, clinical implementation of systematic genomic profiling has rarely been achieved beyond limited numbers of oncogene point mutations. To address this challenge, we utilized a targeted, massively parallel sequencing approach to detect tumor genomic alterations in formalin-fixed, paraffin-embedded (FFPE) tumor samples. Nearly 400-fold mean sequence coverage was achieved, and single-nucleotide sequence variants, small insertions/deletions, and chromosomal copynumber alterations were detected simultaneously with high accuracy compared with other methods in clinical use. Putatively actionable genomic alterations, including those that predict sensitivity or resistance to established and experimental therapies, were detected in each tumor sample tested. Thus, targeted deep sequencing of clinical tumor material may enable mutation-driven clinical trials and, ultimately, "personalized" cancer treatment. SIGNIFICANCE: Despite the rapid proliferation of targeted therapeutic agents, systematic methods to profile clinically relevant tumor genomic alterations remain underdeveloped. We describe a sequencingbased approach to identifying genomic alterations in FFPE tumor samples. These studies affirm the feasibility and clinical utility of targeted sequencing in the oncology arena and provide a foundation for genomics-based stratification of cancer patients.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Cell Line, Tumor , DNA Mutational Analysis/methods , Gene Dosage , Humans
10.
Curr Protoc Hum Genet ; Chapter 18: Unit 18.4, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20582916

ABSTRACT

This unit describes a protocol for the targeted enrichment of exons from randomly sheared genomic DNA libraries using an in-solution hybrid selection approach for sequencing on an Illumina Genome Analyzer II. The steps for designing and ordering a hybrid selection oligo pool are reviewed, as are critical steps for performing the preparation and hybrid selection of an Illumina paired-end library. Critical parameters, performance metrics, and analysis workflow are discussed.


Subject(s)
Exons/genetics , Nucleic Acid Hybridization/methods , Sequence Analysis, DNA/methods , Humans , Solutions
11.
Nat Genet ; 40(9): 1056-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18711365

ABSTRACT

To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 x 10(-9)) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 x 10(-8), rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.


Subject(s)
Ankyrins/genetics , Bipolar Disorder/genetics , Calcium Channels, L-Type/genetics , Genome-Wide Association Study , Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 15 , Genetic Predisposition to Disease , Humans , Logistic Models , Polymorphism, Single Nucleotide
12.
Nature ; 449(7164): 851-61, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17943122

ABSTRACT

We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.


Subject(s)
Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , Female , Homozygote , Humans , Linkage Disequilibrium/genetics , Male , Racial Groups/genetics , Recombination, Genetic/genetics , Selection, Genetic
13.
Nature ; 449(7164): 913-8, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17943131

ABSTRACT

With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.


Subject(s)
Genome, Human/genetics , Selection, Genetic , Antiporters/genetics , Edar Receptor/chemistry , Edar Receptor/genetics , Gene Frequency , Genetics, Population , Geography , Haplotypes/genetics , Humans , Models, Molecular , Polymorphism, Single Nucleotide/genetics , Protein Structure, Tertiary
14.
Science ; 316(5829): 1331-6, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17463246

ABSTRACT

New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D-in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1-and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome, Human , Polymorphism, Single Nucleotide , Triglycerides/blood , Adaptor Proteins, Signal Transducing/genetics , Aged , Alleles , Blood Glucose/analysis , Case-Control Studies , Chromosome Mapping , Chromosomes, Human, Pair 9/genetics , Female , Genetic Markers , Genotype , Haplotypes , Humans , Insulin Resistance/genetics , Insulin-Like Growth Factor Binding Proteins/genetics , Introns , Male , Meta-Analysis as Topic , Middle Aged , Quantitative Trait, Heritable
15.
Science ; 296(5576): 2225-9, 2002 Jun 21.
Article in English | MEDLINE | ID: mdl-12029063

ABSTRACT

Haplotype-based methods offer a powerful approach to disease gene mapping, based on the association between causal mutations and the ancestral haplotypes on which they arose. As part of The SNP Consortium Allele Frequency Projects, we characterized haplotype patterns across 51 autosomal regions (spanning 13 megabases of the human genome) in samples from Africa, Europe, and Asia. We show that the human genome can be parsed objectively into haplotype blocks: sizable regions over which there is little evidence for historical recombination and within which only a few common haplotypes are observed. The boundaries of blocks and specific haplotypes they contain are highly correlated across populations. We demonstrate that such haplotype frameworks provide substantial statistical power in association studies of common genetic variation across each region. Our results provide a foundation for the construction of a haplotype map of the human genome, facilitating comprehensive genetic association studies of human disease.


Subject(s)
Genome, Human , Haplotypes , Polymorphism, Single Nucleotide , Africa , Black or African American , Alleles , Asian People/genetics , Black People/genetics , China , Chromosome Mapping , Computational Biology , Computer Simulation , Europe , Genetic Variation , Genotype , Humans , Japan , Linkage Disequilibrium , Models, Genetic , Recombination, Genetic , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL