Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 170: 107524, 2022 12.
Article in English | MEDLINE | ID: mdl-36260950

ABSTRACT

The burden of disease associated with environmental exposures disproportionately impacts residents of low- and middle-income countries. Children living in rural regions of these countries may experience higher exposure to insecticides from indoor residual spraying used for malaria control and household air pollution. This study evaluated environmental exposures of children living in a rural region of South Africa. Quantifying exposure levels and identifying characteristics that are associated with exposure in this geographic region has been challenging due to limitations with available monitoring techniques. Wearable passive samplers have recently been shown to be a convenient and reliable tool for assessing personal exposures. In this study, a passive sampler wristband, known as Fresh Air wristband, was worn by 49 children (five-years of age) residing in the Limpopo province of South Africa. The study leveraged ongoing research within the Venda Health Examination of Mothers, Babies, and their Environment (VHEMBE) birth cohort. A wide range of chemicals (35 in total) were detected using the wristbands, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, phthalates, and organophosphate esters (OPEs) flame retardants. Higher concentrations of PAHs were observed among children from households that fell below the food poverty threshold, did not have access to electric cookstoves/burners, or reported longer times of cooking or burning materials during the sampling period. Concentrations of p,p'-DDD and p,p'-DDT were also found to be elevated for children from households falling below the food poverty threshold as well as for children whose households were sprayed for malaria control within the previous 1.5 years. This study demonstrates the feasibility of using passive sampler wristbands as a non-invasive method for personal exposure assessment of children in rural regions of South Africa to complex mixtures environmental contaminants derived from a combination of sources. Future studies are needed to further identify and understand the effects of airborne environmental contaminants on childhood development and strategies to mitigate exposures.


Subject(s)
Air Pollutants , Environmental Pollutants , Child , Female , Humans , Birth Cohort , Mothers , Poverty
2.
Environ Sci Technol ; 56(4): 2191-2203, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35089017

ABSTRACT

Children in low- and middle-income countries are often exposed to higher levels of chemicals and are more vulnerable to the health effects of air pollution. Little is known about the diversity, toxicity, and dynamics of airborne chemical exposures at the molecular level. We developed a workflow employing state-of-the-art wearable passive sampling technology coupled with high-resolution mass spectrometry to comprehensively measure 147 children's personal exposures to airborne chemicals in Limpopo, South Africa, as part of the Venda Health Examination of Mothers, Babies, and Their Environment (VHEMBE). 637 environmental exposures were detected, many of which have never been measured in this population; of these 50 airborne chemical exposures of concern were detected, including pesticides, plasticizers, organophosphates, dyes, combustion products, and perfumes. Biocides detected in wristbands included p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), propoxur, piperonyl butoxide, and triclosan. Exposures differed across the assessment period with 27% of detected chemicals observed to be either higher or lower in the wet or dry seasons.


Subject(s)
Exposome , Pesticides , Wearable Electronic Devices , Child , DDT , Dichlorodiphenyl Dichloroethylene , Female , Humans , Infant , Mass Spectrometry , Mothers , South Africa/epidemiology
3.
Environ Sci Technol Lett ; 9(2): 153-159, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-37566382

ABSTRACT

Exhaled respiratory droplets and aerosols can carry infectious viruses and are an important mode of transmission for COVID-19. Recent studies have been successful in detecting airborne SARS-CoV-2 RNA in indoor settings using active sampling methods. The cost, size, and maintenance of these samplers, however, limit their long-term monitoring ability in high-risk transmission areas. As an alternative, passive samplers can be small, lightweight, and inexpensive and do not require electrical power or maintenance for continual operation. Integration of passive samplers into wearable designs can be used to better understand personal exposure to the respiratory virus. This study evaluated the use of a polydimethylsiloxane (PDMS)-based passive sampler to assess personal exposure to aerosol and droplet SARS-CoV-2. The rate of uptake of virus-laden aerosol on PDMS was determined in lab-based rotating drum experiments to estimate time-weighted averaged airborne viral concentrations from passive sampler viral loading. The passive sampler was then embedded in a wearable clip design and distributed to community members across Connecticut to surveil personal SARS-CoV-2 exposure. The virus was detected on clips worn by five of the 62 participants (8%) with personal exposure ranging from 4 to 112 copies of SARS-CoV-2 RNA/m3, predominantly in indoor restaurant settings. Our findings demonstrate that PDMS-based passive samplers may serve as a useful exposure assessment tool for airborne viral exposure in real-world high-risk settings and provide avenues for early detection of potential cases and guidance on site-specific infection control protocols that preempt community transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...