Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Methods ; 462: 65-73, 2018 11.
Article in English | MEDLINE | ID: mdl-30165064

ABSTRACT

Immortalized T cells such as T cell hybridomas, transfectomas, and transductants are useful tools to study tri-molecular complexes consisting of peptide, MHC, and T cell receptor (TCR) molecules. These cells have been utilized for antigen discovery studies for decades due to simplicity and rapidness of growing cells. However, responsiveness to antigen stimulation is typically less sensitive compared to primary T cells, resulting in occasional false negative outcomes especially for TCRs having low affinity to a peptide-MHC complex (pMHC). To overcome this obstacle, we genetically engineered T cell hybridomas to express additional CD3 molecules as well as CD4 with two amino acid substitutions that increase affinity to MHC class II molecules. The manipulated T cell hybridomas that were further transduced with retroviral vectors encoding TCRs of interest responded to cognate antigens more robustly than non-manipulated cells without evoking non-antigen specific reactivity. Of importance, the manipulation with CD3 and mutated human CD4 expression was effective in increasing responsiveness of T cell hybridomas to a wide variety of TCR, peptide, and MHC combinations across class II genetic loci (i.e. HLA-DR, HLA-DQ, HLA-DP, and murine H2-IA) and species (i.e. both humans and mice), and thus will be useful to identify antigen specificity of T cells.


Subject(s)
Antigens/pharmacology , Cell Line, Transformed/immunology , Hybridomas/immunology , Lymphocyte Activation/drug effects , Receptors, Antigen, T-Cell/immunology , Antigens/immunology , CD3 Complex/immunology , Cell Line, Transformed/cytology , Histocompatibility Antigens Class II/immunology , Humans , Hybridomas/cytology
2.
Diabetes ; 67(7): 1356-1368, 2018 07.
Article in English | MEDLINE | ID: mdl-29654212

ABSTRACT

In spite of tolerance mechanisms, some individuals develop T-cell-mediated autoimmunity. Posttranslational modifications that increase the affinity of epitope presentation and/or recognition represent one means through which self-tolerance mechanisms can be circumvented. We investigated T-cell recognition of peptides that correspond to modified ß-cell antigens in subjects with type 1 diabetes. Modified peptides elicited enhanced proliferation by autoreactive T-cell clones. Endoplasmic reticulum (ER) stress in insulinoma cells increased cytosolic calcium and the activity of tissue transglutaminase 2 (tTG2). Furthermore, stressed human islets and insulinomas elicited effector responses from T cells specific for modified peptides, suggesting that ER stress-derived tTG2 activity generated deamidated neoepitopes that autoreactive T cells recognized. Patients with type 1 diabetes had large numbers of T cells specific for these epitopes in their peripheral blood. T cells with these specificities were also isolated from the pancreatic draining lymph nodes of cadaveric donors with established diabetes. Together, these results suggest that self-antigens are enzymatically modified in ß-cells during ER stress, giving rise to modified epitopes that could serve to initiate autoimmunity or to further broaden the antigenic repertoire, activating potentially pathogenic CD4+ T cells that may not be effectively eliminated by negative selection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Endoplasmic Reticulum Stress/physiology , Epitopes, T-Lymphocyte/metabolism , Insulin-Secreting Cells/metabolism , Protein Processing, Post-Translational , Animals , Antigen Presentation , Autoantigens/immunology , Autoimmunity/immunology , Case-Control Studies , Cells, Cultured , Diabetes Mellitus, Type 1/metabolism , Enzyme Activation , Epitopes, T-Lymphocyte/immunology , GTP-Binding Proteins/metabolism , Humans , Insecta , Insulin-Secreting Cells/immunology , Protein Glutamine gamma Glutamyltransferase 2 , Protein Processing, Post-Translational/physiology , Protein-Arginine Deiminase Type 2 , Protein-Arginine Deiminases/metabolism , Transglutaminases/metabolism
3.
JCI Insight ; 3(8)2018 04 19.
Article in English | MEDLINE | ID: mdl-29669939

ABSTRACT

Cystic fibrosis-related (CF-related) diabetes (CFRD) is an increasingly common and devastating comorbidity of CF, affecting approximately 35% of adults with CF. However, the underlying causes of CFRD are unclear. Here, we examined cystic fibrosis transmembrane conductance regulator (CFTR) islet expression and whether the CFTR participates in islet endocrine cell function using murine models of ß cell CFTR deletion and normal and CF human pancreas and islets. Specific deletion of CFTR from murine ß cells did not affect ß cell function. In human islets, CFTR mRNA was minimally expressed, and CFTR protein and electrical activity were not detected. Isolated CF/CFRD islets demonstrated appropriate insulin and glucagon secretion, with few changes in key islet-regulatory transcripts. Furthermore, approximately 65% of ß cell area was lost in CF donors, compounded by pancreatic remodeling and immune infiltration of the islet. These results indicate that CFRD is caused by ß cell loss and intraislet inflammation in the setting of a complex pleiotropic disease and not by intrinsic islet dysfunction from CFTR mutation.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/etiology , Diabetes Complications/genetics , Diabetes Mellitus/genetics , Islets of Langerhans/metabolism , Adult , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis/veterinary , Diabetes Complications/veterinary , Diabetes Mellitus/epidemiology , Diabetes Mellitus/veterinary , Female , Gene Deletion , Glucagon/metabolism , Humans , Inflammation/complications , Inflammation/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Mice , Mutation
6.
Nat Med ; 22(12): 1482-1487, 2016 12.
Article in English | MEDLINE | ID: mdl-27798614

ABSTRACT

A major therapeutic goal for type 1 diabetes (T1D) is to induce autoantigen-specific tolerance of T cells. This could suppress autoimmunity in those at risk for the development of T1D, as well as in those with established disease who receive islet replacement or regeneration therapy. Because functional studies of human autoreactive T cell responses have been limited largely to peripheral blood-derived T cells, it is unclear how representative the peripheral T cell repertoire is of T cells infiltrating the islets. Our knowledge of the insulitic T cell repertoire is derived from histological and immunohistochemical analyses of insulitis, the identification of autoreactive CD8+ T cells in situ, in islets of human leukocyte antigen (HLA)-A2+ donors and isolation and identification of DQ8 and DQ2-DQ8 heterodimer-restricted, proinsulin-reactive CD4+ T cells grown from islets of a single donor with T1D. Here we present an analysis of 50 of a total of 236 CD4+ and CD8+ T cell lines grown from individual handpicked islets or clones directly sorted from handpicked, dispersed islets from nine donors with T1D. Seventeen of these T cell lines and clones reacted to a broad range of studied native islet antigens and to post-translationally modified peptides. These studies demonstrate the existence of a variety of islet-infiltrating, islet-autoantigen reactive T cells in individuals with T1D, and these data have implications for the design of successful immunotherapies.


Subject(s)
Autoantigens/immunology , Autoimmunity/immunology , Diabetes Mellitus, Type 1/immunology , HLA-A2 Antigen/immunology , HLA-DQ Antigens/immunology , Islets of Langerhans/immunology , T-Lymphocytes/immunology , Adolescent , Adult , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Child , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...