Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 11(9)2023 09.
Article in English | MEDLINE | ID: mdl-37734878

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a devastating disease most often associated with tobacco consumption that induces a field of mutations from which a tumor arises. Identification of ways to prevent the emergence of cancer in high-risk patients is an ultimate goal for combatting all types of cancer, including OSCC. METHODS: Our study employs a mouse model of tongue carcinogenesis induced by tobacco carcinogen mimetic, 4-nitroquinoline 1-oxide (4NQO), to establish tongue dysplasia and OSCC. We use conventional histology, immunohistochemistry, multispectral imaging, mass cytometry, novel cell lines, pharmaceutical inhibition of PI3Kγ, T-cell suppression assays and mouse transplant models in our functional experimentation. RESULTS: In our study, we identify Ly6G+ granulocytes as the most abundant immune cell type in a model of tongue carcinogenesis induced by tobacco carcinogen mimetic 4NQO. Targeting Ly6G+ granulocytes with a pharmacologic inhibitor of PI3Kγ, an isoform of PI3K exclusively expressed by myeloid cells, resulted in reduced tongue dysplasia severity, and reduced rates of OSCC. Importantly, we performed functional assays with the Ly6G+ granulocytes induced in cell line models of 4NQO carcinogenesis to demonstrate that these granulocytes have increased polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) activity against T-cell proliferation and these PMN-MDSCs play a functional role in promoting tumor formation by inhibiting tumor regression in a PI3Kγ-dependent manner. CONCLUSIONS: Overall, our data suggest that recruitment of PMN-MDSCs to sites of dysplasia is critical to immune suppression of CD8 T cells, thereby permitting malignancy, and PI3Kγ inhibitors are one mechanism to reduce PMN-MDSC recruitment, immunosuppression and tumorigenesis in OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Animals , Mice , Phosphatidylinositol 3-Kinase , Carcinoma, Squamous Cell/chemically induced , Mouth Neoplasms/chemically induced , Carcinogenesis , Carcinogens/toxicity , Squamous Cell Carcinoma of Head and Neck , Phosphatidylinositols
2.
Cancer Cell Int ; 20: 417, 2020.
Article in English | MEDLINE | ID: mdl-32874131

ABSTRACT

BACKGROUND: Immunocompetent animal models are required to study tumor-host interactions, immunotherapy, and immunotherapeutic combinations, however the currently available immunocompetent lung cancer models have substantial limitations. While orthotopic models potentially help fill this gap, the utility of these models has been limited by the very small number of murine lung cancer cell lines capable of forming orthotopic tumors in immunocompetent C57BL/6 hosts. METHODS: Primary lung tumors with specific genetic alterations were created in C57BL/6 background mice. These tumors were then passaged through other animals to increase tumorigenicity and select for the ability to grow in a non-self animal. Once tumors demonstrated growth in a non-self host, cell lines were established. Successful cell lines were evaluated for the ability to produce orthotopic lung tumors in immunocompetent hosts. RESULTS: We produced six murine lung cancer lines capable of orthotopic lung tumor formation in immunocompetent C57BL/6 animals. These lines demonstrate the expected genetic alterations based on their primary tumor genetics. CONCLUSIONS: These novel cell lines will be useful for evaluating tumor-host interactions, the impact of specific oncogenic alterations on the tumor microenvironment, and immunotherapeutic approaches. This method of generating murine lines capable of orthotopic growth can likely be applied to other tumors and will broaden the applicability of pre-clinical testing of immunotherapeutic treatment regimens.

SELECTION OF CITATIONS
SEARCH DETAIL