Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38140193

ABSTRACT

We previously reported a protective antibody response in mice immunized with synthetic microparticle vaccines made using layer-by-layer fabrication (LbL-MP) and containing the conserved T1BT* epitopes from the P. falciparum circumsporozoite protein. To further optimize the vaccine candidate, a benchtop tangential flow filtration method (LbL-by-TFF) was developed and utilized to produce vaccine candidates that differed in the status of base layer crosslinking, inclusion of a TLR2 ligand in the antigenic peptide, and substitution of serine or alanine for an unpaired cysteine residue in the T* epitope. Studies in mice revealed consistent superiority of the Pam3Cys-modified candidates and a modest benefit of base layer crosslinking, as evidenced by higher and more persistent antibody titers (up to 18 months post-immunization), a qualitative improvement of T-cell responses toward a Th1 phenotype, and greater protection from live parasite challenges compared to the unmodified prototype candidate. Immunogenicity was also tested in a non-human primate model, the rhesus macaque. Base layer-crosslinked LbL-MP loaded with T1BT* peptide with or without covalently linked Pam3Cys elicited T1B-specific antibody responses and T1BT*-specific T-cell responses dominated by IFNγ secretion with lower levels of IL-5 secretion. The Pam3Cys-modified construct was more potent, generating antibody responses that neutralized wild-type P. falciparum in an in vitro hepatocyte invasion assay. IgG purified from individual macaques immunized with Pam3Cys.T1BT* LbL-MP protected naïve mice from challenges with transgenic P. berghei sporozoites that expressed the full-length PfCS protein, with 50-88% of passively immunized mice parasite-free for ≥15 days. Substitution of serine for an unpaired cysteine in the T* region of the T1BT* subunit did not adversely impact immune potency in the mouse while simplifying the manufacture of the antigenic peptide. In a Good Laboratory Practices compliant rabbit toxicology study, the base layer-crosslinked, Pam3Cys-modified, serine-substituted candidate was shown to be safe and immunogenic, eliciting parasite-neutralizing antibody responses and establishing the dose/route/regimen for a clinical evaluation of this novel synthetic microparticle pre-erythrocytic malaria vaccine candidate.

2.
Vaccine ; 31(15): 1898-904, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23481177

ABSTRACT

Epitopes of the circumsporozoite (CS) protein of Plasmodium falciparum, the most pathogenic species of the malaria parasite, have been shown to elicit protective immunity in experimental animals and human volunteers. The mechanisms of immunity include parasite-neutralizing antibodies that can inhibit parasite motility in the skin at the site of infection and in the bloodstream during transit to the hepatocyte host cell and also block interaction with host cell receptors on hepatocytes. In addition, specific CD4+ and CD8+ cellular mechanisms target the intracellular hepatic forms, thus preventing release of erythrocytic stage parasites from the infected hepatocyte and the ensuing blood stage cycle responsible for clinical disease. An innovative method for producing particle vaccines, layer-by-layer (LbL) fabrication of polypeptide films on solid CaCO3 cores, was used to produce synthetic malaria vaccines containing a tri-epitope CS peptide T1BT comprising the antibody epitope of the CS repeat region (B) and two T-cell epitopes, the highly conserved T1 epitope and the universal epitope T. Mice immunized with microparticles loaded with T1BT peptide developed parasite-neutralizing antibodies and malaria-specific T-cell responses including cytotoxic effector T-cells. Protection from liver stage infection following challenge with live sporozoites from infected mosquitoes correlated with neutralizing antibody levels. Although some immunized mice with low or undetectable neutralizing antibodies were also protected, depletion of T-cells prior to challenge resulted in the majority of mice remaining resistant to challenge. In addition, mice immunized with microparticles bearing only T-cell epitopes were not protected, demonstrating that cellular immunity alone was not sufficient for protective immunity. Although the microparticles without adjuvant were immunogenic and protective, a simple modification with the lipopeptide TLR2 agonist Pam3Cys increased the potency and efficacy of the LbL vaccine candidate. This study demonstrates the potential of LbL particles as promising malaria vaccine candidates using the T1BT epitopes from the P. falciparum CS protein.


Subject(s)
Antibodies, Neutralizing/immunology , Immunity, Cellular/immunology , Malaria Vaccines/chemical synthesis , Malaria Vaccines/immunology , Malaria/immunology , Malaria/prevention & control , Plasmodium falciparum/immunology , Vaccines, Synthetic/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Culicidae/parasitology , Epitopes, T-Lymphocyte/immunology , Female , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Parasites/immunology , Parasites/metabolism , Peptides/chemistry , Peptides/immunology , Plasmodium falciparum/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Sporozoites/immunology , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic/chemistry
3.
Vaccine ; 29(3): 558-69, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-20951665

ABSTRACT

Nanoparticle vaccines induce potent immune responses in the absence of conventional adjuvant due to the recognition by immune cells of the particle structures, which mimic natural pathogens such as viruses and bacteria. Nanoparticle vaccines were fabricated by constructing artificial biofilms using layer-by-layer (LbL) deposition of oppositely charged polypeptides and target designed peptides on CaCO(3) cores. LbL nanoparticles were efficiently internalized by dendritic cells in vitro by a mechanism that was at least partially phagocytic, and induced DC maturation without triggering secretion of inflammatory cytokines. LbL nanoparticle delivery of designed peptides to DC resulted in potent cross-presentation to CD8+ T-cells and more efficient presentation to CD4+ T-cells compared to presentation of soluble peptide. A single immunization of mice with LbL nanoparticles containing designed peptide induced vigorous T-cell responses characterized by a balanced effector (IFNγ) and Th2 (IL-4) ELISPOT profile and in vivo CTL activity. Mice immunized with LbL nanoparticles bearing ovalbumin-derived designed peptides were protected from challenge with Listeria monocytogenes ectopically expressing ovalbumin, confirming the relevance of the CTL/effector T-cell responses. LbL nanoparticles also elicited antibody responses to the target epitope but not to the matrix components of the nanoparticle, avoiding the vector or carrier affect that hampers utility of other vaccine platforms. The potency and efficacy of LbL nanoparticles administered in aqueous suspension without adjuvant or other formulation additive, and the absence of immune responses to the matrix components, suggest that this strategy may be useful in producing novel vaccines against multiple diseases.


Subject(s)
Antibodies, Bacterial/blood , Calcium Carbonate/metabolism , Nanoparticles/administration & dosage , Ovalbumin/immunology , T-Lymphocytes/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Calcium Carbonate/administration & dosage , Cross-Priming , Cytotoxicity, Immunologic , Dendritic Cells/immunology , Female , Interferon-gamma/metabolism , Interleukin-4/metabolism , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Ovalbumin/administration & dosage , Ovalbumin/metabolism , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...