Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Med Inform Assoc ; 29(2): 230-238, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34405856

ABSTRACT

OBJECTIVE: To identify differences related to sex and define autism spectrum disorder (ASD) comorbidities female-enriched through a comprehensive multi-PheWAS intersection approach on big, real-world data. Although sex difference is a consistent and recognized feature of ASD, additional clinical correlates could help to identify potential disease subgroups, based on sex and age. MATERIALS AND METHODS: We performed a systematic comorbidity analysis on 1860 groups of comorbidities exploring all spectrum of known disease, in 59 140 individuals (11 440 females) with ASD from 4 age groups. We explored ASD sex differences in 2 independent real-world datasets, across all potential comorbidities by comparing (1) females with ASD vs males with ASD and (2) females with ASD vs females without ASD. RESULTS: We identified 27 different comorbidities that appeared significantly more frequently in females with ASD. The comorbidities were mostly neurological (eg, epilepsy, odds ratio [OR] > 1.8, 3-18 years of age), congenital (eg, chromosomal anomalies, OR > 2, 3-18 years of age), and mental disorders (eg, intellectual disability, OR > 1.7, 6-18 years of age). Novel comorbidities included endocrine metabolic diseases (eg, failure to thrive, OR = 2.5, ages 0-2), digestive disorders (gastroesophageal reflux disease: OR = 1.7, 6-11 years of age; and constipation: OR > 1.6, 3-11 years of age), and sense organs (strabismus: OR > 1.8, 3-18 years of age). DISCUSSION: A multi-PheWAS intersection approach on real-world data as presented in this study uniquely contributes to the growing body of research regarding sex-based comorbidity analysis in ASD population. CONCLUSIONS: Our findings provide insights into female-enriched ASD comorbidities that are potentially important in diagnosis, as well as the identification of distinct comorbidity patterns influencing anticipatory treatment or referrals. The code is publicly available (https://github.com/hms-dbmi/sexDifferenceInASD).


Subject(s)
Autism Spectrum Disorder , Sex Characteristics , Autism Spectrum Disorder/epidemiology , Child , Child, Preschool , Comorbidity , Female , Humans , Infant , Infant, Newborn , Male , Odds Ratio , Prevalence
2.
J Am Med Inform Assoc ; 28(8): 1694-1702, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34009343

ABSTRACT

OBJECTIVE: When studying any specific rare disease, heterogeneity and scarcity of affected individuals has historically hindered investigators from discerning on what to focus to understand and diagnose a disease. New nongenomic methodologies must be developed that identify similarities in seemingly dissimilar conditions. MATERIALS AND METHODS: This observational study analyzes 1042 patients from the Undiagnosed Diseases Network (2015-2019), a multicenter, nationwide research study using phenotypic data annotated by specialized staff using Human Phenotype Ontology terms. We used Louvain community detection to cluster patients linked by Jaccard pairwise similarity and 2 support vector classifier to assign new cases. We further validated the clusters' most representative comorbidities using a national claims database (67 million patients). RESULTS: Patients were divided into 2 groups: those with symptom onset before 18 years of age (n = 810) and at 18 years of age or older (n = 232) (average symptom onset age: 10 [interquartile range, 0-14] years). For 810 pediatric patients, we identified 4 statistically significant clusters. Two clusters were characterized by growth disorders, and developmental delay enriched for hypotonia presented a higher likelihood of diagnosis. Support vector classifier showed 0.89 balanced accuracy (0.83 for Human Phenotype Ontology terms only) on test data. DISCUSSIONS: To set the framework for future discovery, we chose as our endpoint the successful grouping of patients by phenotypic similarity and provide a classification tool to assign new patients to those clusters. CONCLUSION: This study shows that despite the scarcity and heterogeneity of patients, we can still find commonalities that can potentially be harnessed to uncover new insights and targets for therapy.


Subject(s)
Undiagnosed Diseases , Adolescent , Adult , Child , Child, Preschool , Databases, Factual , Humans , Infant , Infant, Newborn , Rare Diseases/diagnosis , Rare Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...