Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-33983905

ABSTRACT

Synovial sarcoma is an aggressive malignancy with no effective treatments for patients with metastasis. The synovial sarcoma fusion SS18-SSX, which recruits the SWI/SNF-BAF chromatin remodeling and polycomb repressive complexes, results in epigenetic activation of FGF receptor (FGFR) signaling. In genetic FGFR-knockout models, culture, and xenograft synovial sarcoma models treated with the FGFR inhibitor BGJ398, we show that FGFR1, FGFR2, and FGFR3 were crucial for tumor growth. Transcriptome analyses of BGJ398-treated cells and histological and expression analyses of mouse and human synovial sarcoma tumors revealed prevalent expression of two ETS factors and FGFR targets, ETV4 and ETV5. We further demonstrate that ETV4 and ETV5 acted as drivers of synovial sarcoma growth, most likely through control of the cell cycle. Upon ETV4 and ETV5 knockdown, we observed a striking upregulation of DUX4 and its transcriptional targets that activate the zygotic genome and drive the atrophy program in facioscapulohumeral dystrophy patients. In addition to demonstrating the importance of inhibiting all three FGFRs, the current findings reveal potential nodes of attack for the cancer with the discovery of ETV4 and ETV5 as appropriate biomarkers and molecular targets, and activation of the embryonic DUX4 pathway as a promising approach to block synovial sarcoma tumors.


Subject(s)
Proto-Oncogene Proteins c-ets/metabolism , Sarcoma, Synovial/metabolism , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Heterografts , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenylurea Compounds/pharmacology , Proto-Oncogene Proteins c-ets/genetics , Pyrimidines/pharmacology , Receptors, Fibroblast Growth Factor/deficiency , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Sarcoma, Synovial/genetics , Sarcoma, Synovial/pathology , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Cancers (Basel) ; 12(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935911

ABSTRACT

Chondrosarcomas are a heterogeneous group of malignant bone tumors that produce hyaline cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers, including conventional and dedifferentiated chondrosarcomas. These mutations lead to the inability of IDH to convert isocitrate into α-ketoglutarate (α-KG). Instead, α-KG is reduced into D-2-hydroxyglutarate (D-2HG), an oncometabolite. IDH mutations and D-2HG are thought to contribute to tumorigenesis due to the role of D-2HG as a competitive inhibitor of α-KG-dependent dioxygenases. However, the function of IDH mutations in chondrosarcomas has not been clearly defined. In this study, we knocked out mutant IDH1 (IDH1mut) in two chondrosarcoma cell lines using the CRISPR/Cas9 system. We observed that D-2HG production, anchorage-independent growth, and cell migration were significantly suppressed in the IDH1mut knockout cells. Loss of IDH1mut also led to a marked attenuation of chondrosarcoma formation and D-2HG production in a xenograft model. In addition, RNA-Seq analysis of IDH1mut knockout cells revealed downregulation of several integrin genes, including those of integrin alpha 5 (ITGA5) and integrin beta 5 (ITGB5). We further demonstrated that deregulation of integrin-mediated processes contributed to the tumorigenicity of IDH1-mutant chondrosarcoma cells. Our findings showed that IDH1mut knockout abrogates chondrosarcoma genesis through modulation of integrins. This suggests that integrin molecules are appealing candidates for combinatorial regimens with IDH1mut inhibitors for chondrosarcomas that harbor this mutation.

3.
Leuk Res ; 50: 1-10, 2016 11.
Article in English | MEDLINE | ID: mdl-27626202

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the leading cause of cancer-related death in children, and cure rates for adults remain dismal. Further, effective treatment strategies for relapsed/refractory ALL remain elusive. We previously uncovered that ALL cells are prone to apoptosis via endoplasmic reticulum (ER) stress/unfolded protein response (UPR)-mediated mechanisms. We investigated the antineoplastic activity of pevonedistat®, a novel NEDD8-activating enzyme inhibitor that targets E3 cullin-RING ligases (CRLs) dependent proteasomal protein degradation, in ALL. Herein, we report that pevonedistat induces apoptosis in ALL cells by dysregulating the translational machinery leading to induction of proteotoxic/ER stress and UPR-mediated cell death. Mechanistically, pevonedistat led to P-eIF2a dephosphorylation causing atypical proteotoxic/ER stress from failure to halt protein translation via the UPR and upregulation of mTOR/p70S6K. Additional studies revealed that pevonedistat re-balanced the homeostasis of pro- and anti-apoptotic proteins to favor cell death through altered expression and/or activity of Mcl-1, NOXA, and BIM, suggesting that pevonedistat has a "priming" effect on ALL by altering the apoptotic threshold through modulation of Mcl-1 activity. Further, we demonstrated that pevonedistat synergizes with selected anti-leukemic agents in vitro, and prolongs survival of NSG mice engrafted with ALL cells, lending support for the use of pevonedistat as part of a multi-agent approach.


Subject(s)
Cyclopentanes/pharmacology , Eukaryotic Initiation Factor-2/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pyrimidines/pharmacology , TOR Serine-Threonine Kinases/metabolism , Ubiquitins/antagonists & inhibitors , Unfolded Protein Response/drug effects , Animals , Antineoplastic Agents , Cell Death/drug effects , Cell Line, Tumor , Cyclopentanes/therapeutic use , Endoplasmic Reticulum Stress , Enzyme Inhibitors , Heterografts , Humans , Mice , NEDD8 Protein , Pyrimidines/therapeutic use
4.
Leuk Res ; 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26346348

ABSTRACT

BCR-ABL positive (+) acute lymphoblastic leukemia (ALL) accounts for ∼30% of cases of ALL. We recently demonstrated that 2-deoxy-d-glucose (2-DG), a dual energy (glycolysis inhibition) and ER-stress (N-linked-glycosylation inhibition) inducer, leads to cell death in ALL via ER-stress/UPR-mediated apoptosis. Among ALL subtypes, BCR-ABL+ ALL cells exhibited the highest sensitivity to 2-DG suggesting BCR-ABL expression may be linked to this increased vulnerability. To confirm the role of BCR-ABL, we constructed a NALM6/BCR-ABL stable cell line and found significant increase in 2-DG-induced apoptosis compared to control. We found that Mcl-1 was downregulated by agents inducing ER-stress and Mcl-1 levels correlated with ALL sensitivity. In addition, we showed that Mcl-1 expression is positively regulated by the MEK/ERK pathway, dependent on BCR-ABL, and further downregulated by combining ER-stressors with TKIs. We determined that energy/ER stressors led to translational repression of Mcl-1 via the AMPK/mTOR and UPR/PERK/eIF2α pathways. Taken together, our data indicate that BCR-ABL+ ALL exhibits heightened sensitivity to induction of energy and ER-stress through inhibition of the MEK/ERK pathway, and translational repression of Mcl-1 expression via AMPK/mTOR and UPR/PERK/eIF2α pathways. This study supports further consideration of strategies combining energy/ER-stress inducers with BCR-ABL TKIs for future clinical translation in BCR-ABL+ ALL patients.

5.
PLoS One ; 8(8): e74420, 2013.
Article in English | MEDLINE | ID: mdl-24009772

ABSTRACT

The outcome of patients with resistant phenotypes of acute lymphoblastic leukemia (ALL) or those who relapse remains poor. We investigated the mechanism of cell death induced by metformin in Bp- and T-ALL cell models and primary cells, and show that metformin effectively induces apoptosis in ALL cells. Metformin activated AMPK, down-regulated the unfolded protein response (UPR) demonstrated by significant decrease in the main UPR regulator GRP78, and led to UPR-mediated cell death via up-regulation of the ER stress/UPR cell death mediators IRE1α and CHOP. Using shRNA, we demonstrate that metformin-induced apoptosis is AMPK-dependent since AMPK knock-down rescued ALL cells, which correlated with down-regulation of IRE1α and CHOP and restoration of the UPR/GRP78 function. Additionally rapamycin, a known inhibitor of mTOR-dependent protein synthesis, rescued cells from metformin-induced apoptosis and down-regulated CHOP expression. Finally, metformin induced PIM-2 kinase activity and co-treatment of ALL cells with a PIM-1/2 kinase inhibitor plus metformin synergistically increased cell death, suggesting a buffering role for PIM-2 in metformin's cytotoxicity. Similar synergism was seen with agents targeting Akt in combination with metformin, supporting our original postulate that AMPK and Akt exert opposite regulatory roles on UPR activity in ALL. Taken together, our data indicate that metformin induces ALL cell death by triggering ER and proteotoxic stress and simultaneously down-regulating the physiologic UPR response responsible for effectively buffering proteotoxic stress. Our findings provide evidence for a role of metformin in ALL therapy and support strategies targeting synthetic lethal interactions with Akt and PIM kinases as suitable for future consideration for clinical translation in ALL.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Metformin/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction/drug effects , Unfolded Protein Response , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation, Leukemic/drug effects , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Biosynthesis/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
6.
Mol Cancer Res ; 10(7): 969-78, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22692960

ABSTRACT

The ability to pair the regulation of metabolism and cellular energetics with oncogenes and tumor suppressor genes provides cancer cells with a growth and survival advantage over normal cells. We investigated the mechanism of cell death induced by 2-deoxy-D-glucose (2-DG), a sugar analog with dual activity of inhibiting glycolysis and N-linked glycosylation, in acute lymphoblastic leukemia (ALL). We found that, unlike most other cancer phenotypes in which 2-DG only inhibits cell proliferation under normoxic conditions, ALL lymphoblasts undergo apoptosis. Bp-ALL cell lines and primary cells exhibited sensitivity to 2-DG, whereas T-ALL cells were relatively resistant, revealing phenotypic differences within ALL subtypes. Cotreatment with D-mannose, a sugar essential for N-linked glycosylation, rescues 2-DG-treated ALL cells, indicating that inhibition of N-linked glycosylation and induction of ER stress and the unfolded protein response (UPR) is the predominant mechanism of 2-DG's cytotoxicity in ALL. 2-DG-treated ALL cells exhibit upregulation of P-AMPK, P-Akt, and induction of ER stress/UPR markers (IRE1α, GRP78, P-eIF2α, and CHOP), which correlate with PARP cleavage and apoptosis. In addition, we find that pharmacologic and genetic Akt inhibition upregulates P-AMPK, downregulates UPR, and sensitizes ALL cells to remarkably low doses of 2-DG (0.5 mmol/L), inducing 85% cell death and overcoming the relative resistance of T-ALL. In contrast, AMPK knockdown rescues ALL cells by upregulating the prosurvival UPR signaling. Therefore, 2-DG induces ALL cell death under normoxia by inducing ER stress, and AKT and AMPK, traditionally thought to operate predominantly on the glycolytic pathway, differentially regulate UPR activity to determine cell death or survival.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Leukemia, B-Cell , Leukemia, T-Cell , Oncogene Protein v-akt/metabolism , Unfolded Protein Response , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation , Deoxyglucose/pharmacology , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Glycosylation , Humans , Leukemia, B-Cell/metabolism , Leukemia, B-Cell/pathology , Leukemia, T-Cell/metabolism , Leukemia, T-Cell/pathology , Mannose/pharmacology , Signal Transduction
7.
J Gen Virol ; 86(Pt 9): 2421-2432, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16099899

ABSTRACT

The capacity of herpes simplex virus type 1 (HSV-1) to replicate in vitro decreases tremendously when animal cell cultures are exposed to ligands of both the alpha/beta interferon (IFN-alpha/beta) receptor and IFN-gamma receptor prior to inoculation with low m.o.i.s of HSV-1. However, the available evidence provides no insight into the possible mechanisms by which co-activation of the IFN-alpha/beta- and IFN-gamma-signalling pathways produces this effect. Therefore, it has not been possible to differentiate between whether these observations represent an important in vitro model of host immunological suppression of HSV-1 infection or an irrelevant laboratory phenomenon. Therefore, the current study was initiated to determine whether co-activation of the host cell's IFN-alpha/beta and IFN-gamma pathways either (i) induced death of HSV-1-infected cells such that virus replication was unable to occur; or (ii) disrupted one or more steps in the process of HSV-1 replication. To this end, multiple steps in HSV-1 infection were compared in populations of Vero cells infected with HSV-1 strain KOS (m.o.i. of 2.5) and exposed to ligands of the IFN-alpha/beta receptor, the IFN-gamma receptor or both. The results demonstrated that IFN-beta and IFN-gamma interact in a synergistic manner to block the efficient synthesis of viral DNA and nucleocapsid formation in HSV-1-infected cells and do so without compromising host-cell viability. It was inferred that IFN-mediated suppression of HSV-1 replication may be a central mechanism by which the host immune system limits the spread of HSV-1 infection in vivo.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Interferon-beta/pharmacology , Interferon-gamma/pharmacology , Virion/metabolism , Virus Replication/drug effects , Animals , Cell Line , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , DNA, Viral/biosynthesis , DNA, Viral/drug effects , Drug Synergism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Receptors, Interferon , Vero Cells , Virion/drug effects
8.
Cell Immunol ; 232(1-2): 21-31, 2004.
Article in English | MEDLINE | ID: mdl-15922712

ABSTRACT

Engagement of the T cell receptor (TCR) by antigen or anti-CD3 antibody results in a cycle of internalization and re-expression of the CD3zeta. Following internalization, CD3zeta is degraded and replaced by newly synthesized CD3zeta on the cell surface. Here, we provide evidence that availability of the amino acid L-arginine modulates the cycle of internalization and re-expression of CD3zeta and cause T cell dysfunction. T cells stimulated and cultured in presence of L-arginine, undergo the normal cycle of internalization and re-expression of CD3zeta. In contrast, T cells stimulated and cultured in absence of L-arginine, present a sustained down-regulation of CD3zeta preventing the normal expression of the TCR, exhibit a decreased proliferation, and a significantly diminished production of IFNgamma, IL5, and IL10, but not IL2. The replenishment of L-arginine recovers the expression of CD3zeta. The decreased expression of CD3zeta is not caused by a decreased CD3zeta mRNA, an increased CD3zeta degradation or T cell apoptosis.


Subject(s)
Arginine/pharmacology , CD3 Complex/drug effects , CD3 Complex/genetics , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Apoptosis/drug effects , Apoptosis/immunology , CD3 Complex/immunology , Calcium/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Phosphorylation , RNA, Messenger/drug effects , RNA, Messenger/genetics , Receptors, Antigen, T-Cell/antagonists & inhibitors , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/drug effects , Tyrosine/metabolism
9.
J Immunol ; 171(3): 1232-9, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12874210

ABSTRACT

L-Arginine plays a central role in the normal function of several organs including the immune system. It is metabolized in macrophages by inducible nitric oxide synthase to produce nitric oxide, important in the cytotoxic mechanisms, and by arginase I (ASE I) and arginase II (ASE II) to synthesize L-ornithine and urea, the first being the precursor for the production of polyamines needed for cell proliferation. L-Arginine availability can modulate T cell function. Human T cells stimulated and cultured in the absence of L-arginine lose the expression of the TCR zeta-chain (CD3zeta) and have an impaired proliferation and a decreased cytokine production. The aim of this work was to test whether activated macrophages could modulate extracellular levels of L-arginine and alter T cell function, and to determine which metabolic pathway was responsible for this event. The results show that macrophages stimulated with IL-4 + IL-13 up-regulate ASE I and cationic amino acid transporter 2B, causing a rapid reduction of extracellular levels of L-arginine and inducing decreased expression of CD3zeta and diminished proliferation in normal T lymphocytes. Competitive inhibitors of ASE I or the addition of excess L-arginine lead to the re-expression of CD3zeta and recovery of T cell proliferation. In contrast, inducible nitric oxide synthase or ASE II failed to significantly reduce the extracellular levels of L-arginine and modulate CD3zeta expression. These results may provide new insights into the mechanisms leading to T cell dysfunction and the down-regulation of CD3zeta in cancer and chronic infectious diseases.


Subject(s)
Arginine/metabolism , CD3 Complex/biosynthesis , Macrophages, Peritoneal/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Arginase/physiology , Arginine/antagonists & inhibitors , Arginine/physiology , CD3 Complex/metabolism , Cationic Amino Acid Transporter 2/biosynthesis , Cationic Amino Acid Transporter 2/genetics , Cationic Amino Acid Transporter 2/physiology , Cell Division/immunology , Cells, Cultured , Coculture Techniques , Down-Regulation/immunology , Extracellular Space/enzymology , Extracellular Space/immunology , Extracellular Space/metabolism , Female , Humans , Interleukin-13/pharmacology , Interleukin-4/pharmacology , Jurkat Cells , Macrophage Activation/immunology , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/physiology , Mice , Mice, Inbred C57BL , T-Lymphocytes/enzymology , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...