Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(24): 36020-36032, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379706

ABSTRACT

True-time delays are important building blocks in modern radio frequency systems that can be implemented using integrated microwave photonics, enabling higher carrier frequencies, improved bandwidths, and a reduction in size, weight, and power. Stimulated Brillouin scattering (SBS) offers optically-induced continuously tunable delays and is thus ideal for applications that require programmable reconfiguration but previous approaches have been limited by large SBS gain requirements. Here, we overcome this limitation by using radio-frequency interferometry to enhance the Brillouin-induced delay applied to the optical sidebands that carry RF signals, while controlling the phase of the optical carrier with integrated silicon nitride microring resonators. We report a delay tunability over 600 ps exploiting an enhancement factor of 30, over a bandwidth of 1 GHz using less than 1 dB of Brillouin gain utilizing a photonic chip architecture based on Brillouin scattering and microring resonators.

2.
Opt Express ; 28(21): 32087-32104, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115171

ABSTRACT

We experimentally demonstrate accurate modulation format identification, optical signal to noise ratio (OSNR) estimation, and bit error ratio (BER) estimation of optical signals for wavelength division multiplexed optical communication systems using convolutional neural networks (CNN). We assess the benefits and challenges of extracting information at two distinct points within the demodulation process: immediately after timing recovery and immediately prior to symbol unmapping. For the former, we use 3D Stokes-space based signal representations. For the latter, we use conventional I-Q constellation images created using demodulated symbols. We demonstrate these methods on simulated and experimental dual-polarized waveforms for 32-GBaud QPSK, 8QAM, 16QAM, and 32QAM. Our results show that CNN extracts distinct and learnable features at both the early stage of demodulation where the information can be used to optimize subsequent stages and near the end of demodulation where the constellation images are readily available. Modulation format identification is demonstrated with >99.8% accuracy, OSNR estimation with <0.5 dB average discrepancy and BER estimation with percentage error of <25%.

3.
Opt Lett ; 41(24): 5700-5703, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973493

ABSTRACT

Compact electro-optical modulators are demonstrated on thin films of lithium niobate on silicon operating up to 50 GHz. The half-wave voltage length product of the high-performance devices is 3.1 V.cm at DC and less than 6.5 V.cm up to 50 GHz. The 3 dB electrical bandwidth is 33 GHz, with an 18 dB extinction ratio. The third-order intermodulation distortion spurious free dynamic range is 97.3 dBHz2/3 at 1 GHz and 92.6 dBHz2/3 at 10 GHz. The performance demonstrated by the thin-film modulators is on par with conventional lithium niobate modulators but with lower drive voltages, smaller device footprints, and potential compatibility for integration with large-scale silicon photonics.

SELECTION OF CITATIONS
SEARCH DETAIL