Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Assoc Res Otolaryngol ; 23(6): 771-786, 2022 12.
Article in English | MEDLINE | ID: mdl-35948694

ABSTRACT

The ability to understand speech in complex environments depends on the brain's ability to preserve the precise timing characteristics of the speech signal. Age-related declines in temporal processing may contribute to the older adult's experience of communication difficulty in challenging listening conditions. This study's purpose was to evaluate the effects of rate discrimination training on auditory temporal processing. A double-blind, randomized control design assigned 77 young normal-hearing, older normal-hearing, and older hearing-impaired listeners to one of two treatment groups: experimental (rate discrimination for 100- and 300-Hz pulse trains) and active control (tone detection in noise). All listeners were evaluated during pre- and post-training sessions using perceptual rate discrimination of 100-, 200-, 300-, and 400-Hz band-limited pulse trains and auditory steady-state responses (ASSRs) to the same stimuli. Training generalization was evaluated using several temporal processing measures and sentence recognition tests that included time-compressed and reverberant speech stimuli. Results demonstrated a session × training group interaction for perceptual and ASSR testing to the trained frequencies (100 and 300 Hz), driven by greater improvements in the training group than in the active control group. Further, post-test rate discrimination of the older listeners reached levels that were equivalent to those of the younger listeners at pre-test. Generalization was observed in significant improvement in rate discrimination of untrained frequencies (200 and 400 Hz) and in correlations between performance changes in rate discrimination and sentence recognition of reverberant speech. Further, non-auditory inhibition/attention performance predicted training-related improvement in rate discrimination. Overall, the results demonstrate the potential for auditory training to partially restore temporal processing in older listeners and highlight the role of cognitive function in these gains.


Subject(s)
Hearing Loss , Speech Perception , Time Perception , Humans , Aged , Speech Perception/physiology , Auditory Perception , Noise
2.
J Acoust Soc Am ; 151(3): 1639, 2022 03.
Article in English | MEDLINE | ID: mdl-35364956

ABSTRACT

Auditory temporal processing declines with age, leading to potential deleterious effects on communication. In young normal-hearing listeners, perceptual rate discrimination is rate limited around 300 Hz. It is not known whether this rate limitation is similar in older listeners with hearing loss. The purpose of this study was to investigate age- and hearing-loss-related rate limitations on perceptual rate discrimination, and age- and hearing-loss-related effects on neural representation of these stimuli. Younger normal-hearing, older normal-hearing, and older hearing-impaired listeners performed a pulse-rate discrimination task at rates of 100, 200, 300, and 400 Hz. Neural phase locking was assessed using the auditory steady-state response. Finally, a battery of non-auditory cognitive tests was administered. Younger listeners had better rate discrimination, higher phase locking, and higher cognitive scores compared to both groups of older listeners. Aging, but not hearing loss, diminished neural-rate encoding and perceptual performance; however, there was no relationship between the perceptual and neural measures. Higher cognitive scores were correlated with improved perceptual performance, but not with neural phase locking. This study shows that aging, rather than hearing loss, may be a stronger contributor to poorer temporal processing, and cognitive factors such as processing speed and inhibitory control may be related to these declines.


Subject(s)
Deafness , Hearing Loss , Aged , Auditory Perception , Hearing Loss/diagnosis , Hearing Tests , Humans
3.
J Acoust Soc Am ; 149(3): 1633, 2021 03.
Article in English | MEDLINE | ID: mdl-33765782

ABSTRACT

Older adults exhibit deficits in auditory temporal processing relative to younger listeners. These age-related temporal processing difficulties may be further exacerbated in older adults with cochlear implant (CIs) when CI electrodes poorly interface with their target auditory neurons. The aim of this study was to evaluate the potential interaction between chronological age and the estimated quality of the electrode-neuron interface (ENI) on psychophysical forward masking recovery, a measure that reflects single-channel temporal processing abilities. Fourteen CI listeners (age 15 to 88 years) with Advanced Bionics devices participated. Forward masking recovery was assessed on two channels in each ear (i.e., the channels with the lowest and highest signal detection thresholds). Results indicated that the rate of forward masking recovery declined with advancing age, and that the effect of age was more pronounced on channels estimated to interface poorly with the auditory nerve. These findings indicate that the quality of the ENI can influence the time course of forward masking recovery for older CI listeners. Channel-to-channel variability in the ENI likely interacts with central temporal processing deficits secondary to auditory aging, warranting further study of programming and rehabilitative approaches tailored to older listeners.


Subject(s)
Cochlear Implantation , Cochlear Implants , Auditory Perception , Auditory Threshold , Neurons , Perceptual Masking
4.
Trends Hear ; 23: 2331216519851306, 2019.
Article in English | MEDLINE | ID: mdl-31134842

ABSTRACT

A rapid forward-masked spatial tuning curve measurement procedure, based on Bekesy tracking, was adapted and evaluated for use with cochlear implants. Twelve postlingually-deafened adult cochlear-implant users participated. Spatial tuning curves using the new procedure and using a traditional forced-choice adaptive procedure resulted in similar estimates of parameters. The Bekesy-tracking method was almost 3 times faster than the forced-choice procedure, but its test-retest reliability was significantly poorer. Although too time-consuming for general clinical use, the new method may have some benefits in individual cases, where identifying electrodes with poor spatial selectivity as candidates for deactivation is deemed necessary.


Subject(s)
Cochlear Implants , Speech Perception , Adult , Deafness , Female , Humans , Male , Middle Aged , Reproducibility of Results , Spatial Processing
5.
Trends Hear ; 22: 2331216518813811, 2018.
Article in English | MEDLINE | ID: mdl-30488764

ABSTRACT

Speech understanding abilities are highly variable among cochlear implant (CI) listeners. Poor electrode-neuron interfaces (ENIs) caused by sparse neural survival or distant electrode placement may lead to increased channel interaction and reduced speech perception. Currently, it is not possible to directly measure neural survival in CI listeners; therefore, obtaining information about electrode position is an alternative approach to assessing ENIs. This information can be estimated with computerized tomography (CT) imaging; however, postoperative CT imaging is not often available. A reliable method to assess channel interaction, such as the psychophysical tuning curve (PTC), offers an alternative way to identify poor ENIs. This study aimed to determine (a) the within-subject relationship between CT-estimated electrode distance and PTC bandwidths, and (b) whether using focused stimulation on channels with suspected poor ENI improves vowel identification and sentence recognition. In 13 CI listeners, CT estimates of electrode-to-modiolus distance and PTCs bandwidths were measured for all available electrodes. Two test programs were created, wherein a subset of electrodes used focused stimulation based on (a) broad PTC bandwidth (Tuning) and (b) far electrode-to-modiolus distance (Distance). Two control programs were also created: (a) Those channels not focused in the Distance program (Inverse-Control), and (b) an all-channel monopolar program (Monopolar-Control). Across subjects, scores on the Distance and Tuning programs were significantly higher than the Inverse-Control program, and similar to the Monopolar-Control program. Subjective ratings were similar for all programs. These findings suggest that focusing channels suspected to have a high degree of channel interaction result in quite different outcomes, acutely.


Subject(s)
Cochlea/surgery , Cochlear Implantation/instrumentation , Cochlear Implants , Deafness/rehabilitation , Persons With Hearing Impairments/rehabilitation , Speech Perception , Acoustic Stimulation , Adult , Aged , Aged, 80 and over , Audiometry, Speech , Cochlea/diagnostic imaging , Cochlea/physiopathology , Comprehension , Deafness/diagnosis , Deafness/physiopathology , Deafness/psychology , Electric Stimulation , Female , Hearing , Humans , Male , Middle Aged , Persons With Hearing Impairments/psychology , Psychoacoustics , Speech Intelligibility , Tomography, X-Ray Computed
6.
J Assoc Res Otolaryngol ; 19(5): 571-587, 2018 10.
Article in English | MEDLINE | ID: mdl-29869047

ABSTRACT

Speech understanding abilities vary widely among cochlear implant (CI) listeners. A potential source of this variability is the electrode-neuron interface (ENI), which includes peripheral factors such as electrode position and integrity of remaining spiral ganglion neurons. Suboptimal positioning of the electrode array has been associated with poorer speech outcomes; however, postoperative computerized tomography (CT) scans are often not available to clinicians. CT-estimated electrode-to-modiolus distance (distance from the inner wall of the cochlea) has been shown to account for some variability in behavioral thresholds. However, psychophysical tuning curves (PTCs) may provide additional insight into site-specific variation in channel interaction. Thirteen unilaterally implanted adults with the Advanced Bionics HiRes90K device participated. Behavioral thresholds and PTCs were collected for all available electrodes with steered quadrupolar (sQP) configuration, using a modified threshold sweep procedure, used in Bierer et al. (Trends Hear 19:1-12, 2015). PTC bandwidths were quantified to characterize channel interaction across the electrode array, and tip shifts were assessed to identify possible contributions of neural dead regions. Broader PTC bandwidths were correlated with electrodes farther from the modiolus, but not correlated with sQP threshold, though a trend was observed. Both measures were affected by scalar location, and PTC tip shifts were observed for electrodes farther from the modiolus. sQP threshold was the only variable correlated with word recognition. These results suggest PTCs may be used as a site-specific measure of channel interaction that correlates with electrode position in some CI listeners.


Subject(s)
Cochlea/physiology , Cochlear Implants , Electrodes , Psychoacoustics , Adult , Aged , Aged, 80 and over , Auditory Threshold , Cochlea/diagnostic imaging , Humans , Middle Aged , Speech Perception , Tomography, X-Ray Computed
7.
J Assoc Res Otolaryngol ; 17(3): 237-52, 2016 06.
Article in English | MEDLINE | ID: mdl-26926152

ABSTRACT

Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.


Subject(s)
Auditory Threshold/physiology , Cochlear Implants , Speech Perception , Action Potentials , Adult , Aged , Aged, 80 and over , Electrodes, Implanted , Humans , Middle Aged , Neurons , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL