Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Dev Cogn Neurosci ; 69: 101397, 2024 May 31.
Article in English | MEDLINE | ID: mdl-39029330

ABSTRACT

Measures of physical growth, such as weight and height have long been the predominant outcomes for monitoring child health and evaluating interventional outcomes in public health studies, including those that may impact neurodevelopment. While physical growth generally reflects overall health and nutritional status, it lacks sensitivity and specificity to brain growth and developing cognitive skills and abilities. Psychometric tools, e.g., the Bayley Scales of Infant and Toddler Development, may afford more direct assessment of cognitive development but they require language translation, cultural adaptation, and population norming. Further, they are not always reliable predictors of future outcomes when assessed within the first 12-18 months of a child's life. Neuroimaging may provide more objective, sensitive, and predictive measures of neurodevelopment but tools such as magnetic resonance (MR) imaging are not readily available in many low and middle-income countries (LMICs). MRI systems that operate at lower magnetic fields (< 100mT) may offer increased accessibility, but their use for global health studies remains nascent. The UNITY project is envisaged as a global partnership to advance neuroimaging in global health studies. Here we describe the UNITY project, its goals, methods, operating procedures, and expected outcomes in characterizing neurodevelopment in sub-Saharan Africa and South Asia.

2.
Dev Cogn Neurosci ; 34: 63-74, 2018 11.
Article in English | MEDLINE | ID: mdl-30075348

ABSTRACT

Although the amygdala's role in shaping social behavior is especially important during early post-natal development, very little is known of amygdala functional development before childhood. To address this gap, this study uses resting-state fMRI to examine early amygdalar functional network development in a cross-sectional sample of 80 children from 3-months to 5-years of age. Whole brain functional connectivity with the amygdala, and its laterobasal and superficial sub-regions, were largely similar to those seen in older children and adults. Functional distinctions between sub-region networks were already established. These patterns suggest many amygdala functional circuits are intact from infancy, especially those that are part of motor, visual, auditory and subcortical networks. Developmental changes in connectivity were observed between the laterobasal nucleus and bilateral ventral temporal and motor cortex as well as between the superficial nuclei and medial thalamus, occipital cortex and a different region of motor cortex. These results show amygdala-subcortical and sensory-cortex connectivity begins refinement prior to childhood, though connectivity changes with associative and frontal cortical areas, seen after early childhood, were not evident in this age range. These findings represent early steps in understanding amygdala network dynamics across infancy through early childhood, an important period of emotional and cognitive development.


Subject(s)
Amygdala/growth & development , Magnetic Resonance Imaging/methods , Neural Pathways/growth & development , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Longitudinal Studies , Male
3.
Sci Rep ; 7(1): 9759, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852074

ABSTRACT

White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.


Subject(s)
Child Development , Organogenesis , White Matter/anatomy & histology , White Matter/growth & development , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Infant , Infant, Newborn , Male , White Matter/diagnostic imaging
4.
Neuroimage Clin ; 14: 54-66, 2017.
Article in English | MEDLINE | ID: mdl-28138427

ABSTRACT

The complexity and heterogeneity of neuroimaging findings in individuals with autism spectrum disorder has suggested that many of the underlying alterations are subtle and involve many brain regions and networks. The ability to account for multivariate brain features and identify neuroimaging measures that can be used to characterize individual variation have thus become increasingly important for interpreting and understanding the neurobiological mechanisms of autism. In the present study, we utilize the Mahalanobis distance, a multidimensional counterpart of the Euclidean distance, as an informative index to characterize individual brain variation and deviation in autism. Longitudinal diffusion tensor imaging data from 149 participants (92 diagnosed with autism spectrum disorder and 57 typically developing controls) between 3.1 and 36.83 years of age were acquired over a roughly 10-year period and used to construct the Mahalanobis distance from regional measures of white matter microstructure. Mahalanobis distances were significantly greater and more variable in the autistic individuals as compared to control participants, demonstrating increased atypicalities and variation in the group of individuals diagnosed with autism spectrum disorder. Distributions of multivariate measures were also found to provide greater discrimination and more sensitive delineation between autistic and typically developing individuals than conventional univariate measures, while also being significantly associated with observed traits of the autism group. These results help substantiate autism as a truly heterogeneous neurodevelopmental disorder, while also suggesting that collectively considering neuroimaging measures from multiple brain regions provides improved insight into the diversity of brain measures in autism that is not observed when considering the same regions separately. Distinguishing multidimensional brain relationships may thus be informative for identifying neuroimaging-based phenotypes, as well as help elucidate underlying neural mechanisms of brain variation in autism spectrum disorders.


Subject(s)
Autism Spectrum Disorder/diagnostic imaging , Neural Pathways/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Adult , Anisotropy , Child , Child, Preschool , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Young Adult
5.
Oncogene ; 33(5): 556-66, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-23353822

ABSTRACT

Retinoblastoma (Rb) protein is a tumor suppressor that is dysregulated in a majority of human cancers. Rb functions to inhibit cell cycle progression in part by directly disabling the E2F family of cell cycle-promoting transcription factors. Because the de novo synthesis of multiple glutamine-derived anabolic precursors is required for cell cycle progression, we hypothesized that Rb also may directly regulate proteins involved in glutamine metabolism. We examined glutamine metabolism in mouse embryonic fibroblasts (MEFs) isolated from mice that have triple knock-outs (TKO) of all three Rb family members (Rb-1, Rbl1 and Rbl2) and found that loss of global Rb function caused a marked increase in (13)C-glutamine uptake and incorporation into glutamate and tricarboxylic acid cycle (TCA) intermediates in part via upregulated expression of the glutamine transporter ASCT2 and the activity of glutaminase 1 (GLS1). The Rb-controlled transcription factor E2F-3 altered glutamine uptake by direct regulation of ASCT2 mRNA and protein expression, and E2F-3 was observed to associate with the ASCT2 promoter. We next examined the functional consequences of the observed increase in glutamine uptake and utilization and found that glutamine exposure potently increased oxygen consumption, whereas glutamine deprivation selectively decreased ATP concentration in the Rb TKO MEFs but not the wild-type (WT) MEFs. In addition, TKO MEFs exhibited elevated production of glutathione from exogenous glutamine and had increased expression of gamma-glutamylcysteine ligase relative to WT MEFs. Importantly, this metabolic shift towards glutamine utilization was required for the proliferation of Rb TKO MEFs but not for the proliferation of the WT MEFs. Last, addition of the TCA cycle intermediate α-ketoglutarate to the Rb TKO MEFs reversed the inhibitory effects of glutamine deprivation on ATP, GSH levels and viability. Taken together, these studies demonstrate that the Rb/E2F cascade directly regulates a major energetic and anabolic pathway that is required for neoplastic growth.


Subject(s)
E2F3 Transcription Factor/metabolism , Glutamine/metabolism , Retinoblastoma Protein/metabolism , Retinoblastoma-Like Protein p107/metabolism , Retinoblastoma-Like Protein p130/metabolism , Adenosine Triphosphate/biosynthesis , Amino Acid Transport System ASC/biosynthesis , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Animals , Biological Transport/genetics , Cell Cycle , Cell Proliferation , Cells, Cultured , E2F3 Transcription Factor/biosynthesis , Fibroblasts , Glutamate-Cysteine Ligase/biosynthesis , Glutaminase/biosynthesis , Glutaminase/genetics , Glutaminase/metabolism , Glutathione/biosynthesis , Ketoglutaric Acids/metabolism , Mice , Mice, Knockout , Minor Histocompatibility Antigens , Oxygen/metabolism , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering , Reactive Oxygen Species/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma-Like Protein p107/genetics , Retinoblastoma-Like Protein p130/genetics
6.
Xenobiotica ; 38(11): 1437-51, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18841517

ABSTRACT

1-[(2R)-2-([[(1S,2S)-1-amino-1,2,3,4-tetrahydronaphthalen-2-yl]carbonyl]amino)-3-(4-chlorophenyl)propanoyl]-N-(tert-butyl)-4-cyclohexylpiperidine-4-carboxamide (1) is a potent melanocortin-4 receptor agonist that exhibited time-dependent inhibition of cytochrome P450 (P450) 3A in incubations with human liver microsomes. In incubations fortified with potassium cyanide, a cyano adduct was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis as a cyanonitrosotetrahydronaphthalenyl derivative. The detection of this adduct suggested that a nitroso species was involved in the formation of a metabolite intermediate (MI) complex that led to the observed P450 inactivation. Further evidence supporting this hypothesis derived from incubations of 1 with recombinant P450 3A4, which exhibited a lambda(max) at approximately 450 nm. The species responsible for this absorbance required the presence of beta-nicotinamide adenine dinucleotide phosphate reduced form (NADPH), increased with increasing incubation time and decreased following the addition of potassium ferricyanide to the incubation mixture, suggestive of an MI complex. Similar results were obtained with rat liver microsomes and with recombinant P450 3A1. When rats were dosed with indinavir as a P450 3A probe substrate, plasma exposure to indinavir increased three-fold following pretreatment with 1, consistent with drug-drug interaction projections based on the k(inact) and K(I) parameters for 1 in rat liver microsomes. A similar approach was used to predict the magnitude of the corresponding drug-drug interaction potential in humans dosed with a drug metabolized predominantly by P450 3A, and the forecast area under the curve (AUC) increase ranged from four- to ten-fold. These data prompted a decision to terminate further evaluation of 1 as a development candidate, and led to the synthesis of the methyl analogue 2. Methyl substitution alpha to the amino group in 2 was designed to reduce the propensity for formation of a nitroso intermediate and, indeed, 2 failed to exhibit time-dependent inhibition of P450 3A in human liver microsomal incubations. This case study highlights the importance of mechanistic studies in support of drug-discovery and decision-making processes.


Subject(s)
1-Naphthylamine/analogs & derivatives , Cytochrome P-450 CYP3A Inhibitors , Enzyme Inhibitors/chemistry , Piperidines/chemistry , Receptor, Melanocortin, Type 4/agonists , 1-Naphthylamine/chemistry , 1-Naphthylamine/metabolism , 1-Naphthylamine/pharmacology , Animals , Binding Sites , Cytochrome P-450 CYP3A/metabolism , Drug Discovery , Drug Interactions , Enzyme Inhibitors/metabolism , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Piperidines/metabolism , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Melanocortin, Type 4/metabolism , Tandem Mass Spectrometry
7.
Xenobiotica ; 38(2): 223-37, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18197560

ABSTRACT

N-(1-(3,5-dichlorobenzenesulfonyl)-2S-methyl-azetidine-2-carbonyl)-L-4-(2',6'-dimethoxyphenyl)phenylalanine (1) is a potent antagonist of the very late activating (VLA) antigen-4. During initial screening, 1 exhibited an apparent plasma clearance (CL) of 227 ml min(-1) kg(-1) in Sprague-Dawley rats following an intravenous bolus dose formulated in an aqueous solution containing 40% polyethylene glycol. Such a high CL value led to speculation that the elimination of compound 1 involved extra-hepatic tissues. However, the apparent plasma CL was reduced to 97 ml in(-1) kg(-1) when a 2-min time point was added to sample collections, and further decreased to 48 ml min(-1) kg(-1) after the dose was formulated in rat plasma. The lung extraction of 1 in rats was negligible whereas the hepatic extraction was > or =90%, based on comparison of area under the curve (AUC) values derived from intra-artery, intravenous, and portal vein administration. In rats dosed intravenously with [(14)C]-1, approximately 91% of the radioactivity was recovered in bile over 48 h, with 85% accounted for in the first 4-h samples. The biliary radioactivity profile consisted of approximately 30% intact parent compound, 20% 1-glucuronide, and 50% oxidation products resulting from O-demethylation or hydroxylation reactions. When incubated with rat liver microsomes, oxidative metabolism of 1 was inhibited completely by 1-aminobenzotriazole (ABT), whereas the oxidation and glucuronidation reactions were little affected in the presence of cyclosporin A (CsA). In contrast, the hepatic extraction of 1 in rats was unperturbed in animals pre-dosed with ABT, but was reduced approximately 60% following treatment with CsA. In vitro, 1 was a substrate of the rat organic anion transporter Oatp1b2, and its cellular uptake was inhibited by CsA. In addition, the hepatic extraction of 1 was approximately 30% lower in Eisai hyperbilirubinaemic rats which lack functional multidrug resistant protein-2 (MRP2). Collectively, these data suggest that the clearance of 1 in rats likely is a result of the combined processes of hepatic oxidation, glucuronidation and biliary excretion, all of which are facilitated by active hepatic uptake of parent compound and subsequent active efflux of both unchanged parent and its metabolites into bile. It was concluded, therefore, that multiple mechanisms contribute to the clearance of 1 in rats, and suggest that appropriate pharmacokinetic properties might be difficult to achieve for this class of compounds. This case study demonstrates that an integrated strategy, incorporating both rapid screening and mechanistic investigations, is of particular value in supporting drug discovery efforts and decision-making processes.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Animals , Cells, Cultured , Cyclosporine/metabolism , Dogs , Inactivation, Metabolic , Microsomes, Liver/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Phenylalanine/metabolism , Phenylalanine/physiology , Rats , Rats, Sprague-Dawley , Solute Carrier Organic Anion Transporter Family Member 1B3 , Time Factors , Triazoles/pharmacology
8.
J Biomol Screen ; 6(4): 225-31, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11689122

ABSTRACT

High throughput inhibition screens for human cytochrome P450s (CYPs) are being used in preclinical drug metabolism to support drug discovery programs. The versatility of scintillation proximity assay (SPA) technology has enabled the development of a homogeneous high throughput assay for cytochrome P450 2D6 (CYP2D6) inhibition screen using [O-methyl-(14)C]dextromethorphan as substrate. The basis of the assay was the trapping of the O-demethylation product, [(14)C]HCHO, on SPA beads. Enzyme kinetics parameters V(max) and apparent K(m), determined using pooled human liver microsomes and microsomes from baculovirus cells coexpressing human CYP2D6 and NADPH-cytochrome P450 reductase, were 245 pmol [(14)C]HCHO/min/mg protein and 11 microM, and 27 pmol [(14)C]HCHO/min/pmol and 1.6 microM, respectively. In incubations containing either pooled microsomes or recombinant CYP2D6, [(14)C]dextromethorphan O-demethylase activity was inhibited in the presence of quinidine (IC(50) = 1.0 microM and 20 nM, respectively). By comparison, inhibitors selective for other CYP isoforms were relatively weak (IC(50) > 25 microM). In agreement, a selective CYP2D6 inhibitory monoclonal antibody caused greater than 90% inhibition of [(14)C]dextromethorphan O-demethylase activity in human liver microsomes, whereas CYP2C9/19- and CYP3A4/5-selective antibodies elicited a minimal inhibitory effect. SPA-based [(14)C]dextromethorphan O-demethylase activity was also shown to correlate (r(2) = 0.6) with dextromethorphan O-demethylase measured by high-performance liquid chromatography in a bank of human liver microsomes (N = 15 different organ donors). In a series of known CYP2D6 inhibitors/substrates, the SPA-based assay resolved potent inhibitors (IC(50) < 2 microM) from weak inhibitors (IC(50) >or= 20 microM). It is concluded that the SPA-based assay described herein is suitable for CYP2D6 inhibition screening using either native human liver microsomes or cDNA-expressed CYP2D6.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors , Cytochrome P-450 CYP2D6/chemistry , Drug Evaluation, Preclinical/methods , Scintillation Counting/methods , Antibodies, Monoclonal/metabolism , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme System/metabolism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Kinetics , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Chemical , NADPH-Ferrihemoprotein Reductase/metabolism , Oxidoreductases, O-Demethylating/metabolism , Protein Isoforms , Recombinant Proteins/metabolism
9.
Mol Cell ; 8(3): 557-69, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11583618

ABSTRACT

Polycomb group (PcG) proteins associate to form complexes that repress Hox genes, thereby imposing the patterning of Hox expression required for development. However, these proteins have a second Hox-independent role in regulating cell proliferation. Our results suggest that association between Rb and PcG proteins forms a repressor complex that blocks entry of cells into mitosis. Also, we provide evidence that Rb colocalizes with nuclear PcG complexes and is important for association of PcG complexes with nuclear targets. The Rb-PcG complex may provide a means to link cell cycle arrest to differentiation events leading to embryonic pattern formation.


Subject(s)
Cell Cycle Proteins , Cell Cycle/physiology , Repressor Proteins/metabolism , Retinoblastoma Protein/metabolism , Saccharomyces cerevisiae Proteins , Trans-Activators , Transcription Factors/metabolism , Alcohol Oxidoreductases , Animals , CDC2 Protein Kinase/metabolism , Cell Nucleus/metabolism , Cyclin A/metabolism , Cyclin E/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , E2F Transcription Factors , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Reporter/genetics , Histone Deacetylase 1 , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Immunoblotting , Macromolecular Substances , Microscopy, Fluorescence , Phosphoproteins/genetics , Phosphoproteins/metabolism , Polycomb Repressive Complex 1 , Polycomb-Group Proteins , Promoter Regions, Genetic , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Retinoblastoma Protein/genetics , Transcription Factors/genetics , Transcription, Genetic/physiology , Tumor Cells, Cultured
10.
J Am Chem Soc ; 123(19): 4373-81, 2001 May 16.
Article in English | MEDLINE | ID: mdl-11457220

ABSTRACT

Protein prenylation, involving the alkylation of a specific C-terminal cysteine with a C(15) or C(20) isoprenoid unit, is an essential posttranslational modification required by most GTP-binding proteins for normal biological activity. Despite the ubiquitous nature of this modification and numerous efforts aimed at inhibiting prenylating enzymes for therapeutic purposes, the function of prenylation remains unclear. To explore the role the isoprenoid plays in mediating protein-protein recognition, we have synthesized a photoactivatable, isoprenoid-containing cysteine analogue (2) designed to act as a mimic of the C-terminus of prenylated proteins. Photolysis experiments with 2 and RhoGDI (GDI), a protein which interacts with prenylated Rho proteins, suggest that the GDI is in direct contact with the isoprenoid moiety. These results, obtained using purified GDI as well as Escherichia coli (E. coli) crude extract containing GDI, suggest that this analogue will be an effective and versatile tool for the investigation of putative isoprenoid binding sites in a variety of systems. Incorporation of this analogue into peptides or proteins should allow for even more specific interactions between the photoactivatable isoprenoid and any number of isoprenoid binding proteins.


Subject(s)
Cysteine/analogs & derivatives , Cysteine/chemical synthesis , Polyisoprenyl Phosphates/chemistry , Binding, Competitive , Cross-Linking Reagents , Escherichia coli/chemistry , Indicators and Reagents , Isotope Labeling , Molecular Mimicry , Photochemistry , Photolysis , Precipitin Tests , Protein Prenylation , Spectrophotometry, Ultraviolet , Sulfur Radioisotopes , cdc42 GTP-Binding Protein/chemistry
12.
Mol Cell Biol ; 21(10): 3325-35, 2001 May.
Article in English | MEDLINE | ID: mdl-11313458

ABSTRACT

Mutations that lead to anchorage-independent survival are a hallmark of tumor cells. Adhesion of integrin receptors to extracellular matrix activates a survival signaling pathway in epithelial cells where Akt phosphorylates and blocks the activity of proapoptotic proteins such as the BCL2 family member Bad, the forkhead transcription factor FKHRL-1, and caspase 9. Insulin-like growth factor 1 (IGF-1) is a well-established epithelial cell survival factor that also triggers activation of Akt and can maintain Akt activity after cells lose matrix contact. It is not until IGF-1 expression diminishes (~16 h after loss of matrix contact) that epithelial cells deprived of matrix contact undergo apoptosis. This suggests that IGF-1 expression is linked to cell adhesion and that it is the loss of IGF-1 which dictates the onset of apoptosis after cells lose matrix contact. Here, we examine the linkage between cell adhesion and IGF-1 expression. While IGF-1 is able to maintain Akt activity and phosphorylation of proapoptotic proteins in cells that have lost matrix contact, Akt is not able to phosphorylate and inactivate another of its substrates, glycogen synthase kinase 3beta (GSK-3beta), under these conditions. The reason for this appears to be a rapid translocation of active Akt away from GSK-3beta when cells lose matrix contact. One target of GSK-3beta is cyclin D, which is turned over in response to this phosphorylation. Therefore, cyclin D is rapidly lost when cells are deprived of matrix contact, leading to a loss of cyclin-dependent kinase 4 activity and accumulation of hypophosphorylated, active Rb. This facilitates assembly of a repressor complex containing histone deacetylase (HDAC), Rb, and E2F that blocks transcription of the gene for IGF-1, leading to loss of Akt activity, accumulation of active proapoptotic proteins, and apoptosis. This feedback loop containing GSK-3beta, cyclin D, HDAC-Rb-E2F, and IGF-1 then determines how long Akt will remain active after cells lose matrix contact, and thus it serves to regulate the onset of apoptosis in such cells.


Subject(s)
Carrier Proteins , Cell Cycle Proteins , DNA-Binding Proteins , Epithelial Cells/cytology , Epithelial Cells/physiology , Retinoblastoma Protein/physiology , Transcription Factors/physiology , Cell Adhesion , Cell Survival/physiology , Cells, Cultured , E2F Transcription Factors , Humans , Insulin-Like Growth Factor I/physiology , Retinoblastoma-Binding Protein 1 , Signal Transduction , Transcription Factor DP1 , Transcription, Genetic
14.
Curr Opin Cell Biol ; 12(6): 685-9, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11063932

ABSTRACT

Progression of cells through the cell cycle is central to normal cell proliferation, and checkpoints that regulate this cycle are targets of tumorigenic mutations. One of these checkpoints is the Rb family of proteins that seems to regulate exit of cells from both G(1) and S phase of the cell cycle. Recent studies have linked the function of the Rb family to chromatin remodeling enzymes.


Subject(s)
Chromatin/metabolism , Drosophila Proteins , RNA-Binding Proteins , Retinoblastoma Protein/metabolism , Adenosine Triphosphate/metabolism , Animals , DNA Helicases , Histone Deacetylases/metabolism , Humans , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Retinoblastoma Protein/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Transcription Factors/metabolism
16.
Drug Metab Dispos ; 28(11): 1274-8, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11038152

ABSTRACT

Caspofungin acetate (MK-0991) is a semisynthetic pneumocandin derivative being developed as a parenteral antifungal agent with broad-spectrum activity against systemic infections such as those caused by Candida and Aspergillus species. Following a 1-h i.v. infusion of 70 mg of [(3)H]MK-0991 to healthy subjects, excretion of drug-related material was very slow, such that 41 and 35% of the dosed radioactivity was recovered in urine and feces, respectively, over 27 days. Plasma and urine samples collected around 24 h postdose contained predominantly unchanged MK-0991, together with trace amounts of a peptide hydrolysis product, M0, a linear peptide. However, at later sampling times, M0 proved to be the major circulating component, whereas corresponding urine specimens contained mainly the hydrolytic metabolites M1 and M2, together with M0 and unchanged MK-0991, whose cumulative urinary excretion over the first 16 days postdose represented 13, 71, 1, and 9%, respectively, of the urinary radioactivity. The major metabolite, M2, was highly polar and extremely unstable under acidic conditions when it was converted to a less polar product identified as N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine gamma-lactone. Derivatization of M2 in aqueous media led to its identification as the corresponding gamma-hydroxy acid, N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine. Metabolite M1, which was extremely polar, eluting from HPLC column just after the void volume, was identified by chemical derivatization as des-acetyl-M2. Thus, the major urinary and plasma metabolites of MK-0991 resulted from peptide hydrolysis and/or N-acetylation.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Antifungal Agents/pharmacokinetics , Peptides, Cyclic , Peptides , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/urine , Antifungal Agents/blood , Antifungal Agents/urine , Caspofungin , Chromatography, High Pressure Liquid , Echinocandins , Humans , Lipopeptides , Magnetic Resonance Spectroscopy , Mass Spectrometry
17.
Drug Metab Dispos ; 28(10): 1244-54, 2000 Oct.
Article in English | MEDLINE | ID: mdl-10997947

ABSTRACT

Absorption, distribution, metabolism, and excretion studies were conducted in rats and dogs with rofecoxib (VIOXX, MK-0966), a potent and highly selective inhibitor of cyclooxygenase-2 (COX-2). In rats, the nonexponential decay during the terminal phase (4- to 10-h time interval) of rofecoxib plasma concentration versus time curves after i.v. or oral administration of [(14)C]rofecoxib precluded accurate determinations of half-life, AUC(0-infinity) (area under the plasma concentration versus time curve extrapolated to infinity), and hence, bioavailability. After i.v. administration of [(14)C]rofecoxib to dogs, plasma clearance, volume of distribution at steady state, and elimination half-life values of rofecoxib were 3.6 ml/min/kg, 1.0 l/kg, and 2.6 h, respectively. Oral absorption (5 mg/kg) was rapid in both species with C(max) occurring by 0.5 h (rats) and 1.5 h (dogs). Bioavailability in dogs was 26%. Systemic exposure increased with increasing dosage in rats and dogs after i.v. (1, 2, and 4 mg/kg), or oral (2, 5, and 10 mg/kg) administration, except in rats where no additional increase was observed between the 5 and 10 mg/kg doses. Radioactivity distributed rapidly to tissues, with the highest concentrations of the i.v. dose observed in most tissues by 5 min and by 30 min in liver, skin, fat, prostate, and bladder. Excretion occurred primarily by the biliary route in rats and dogs, except after i.v. administration of [(14)C]rofecoxib to dogs, where excretion was divided between biliary and renal routes. Metabolism of rofecoxib was extensive. 5-Hydroxyrofecoxib-O-beta-D-glucuronide was the major metabolite excreted by rats in urine and bile. 5-Hydroxyrofecoxib, rofecoxib-3',4'-dihydrodiol, and 4'-hydroxyrofecoxib sulfate were less abundant, whereas cis- and trans-3,4-dihydro-rofecoxib were minor. Major metabolites in dog were 5-hydroxyrofecoxib-O-beta-D-glucuronide (urine), trans-3, 4-dihydro-rofecoxib (urine), and 5-hydroxyrofecoxib (bile).


Subject(s)
Cyclooxygenase Inhibitors/pharmacokinetics , Lactones/pharmacokinetics , Absorption , Animals , Area Under Curve , Bile/chemistry , Bile/metabolism , Carbon Radioisotopes , Chromatography, High Pressure Liquid , Cyclooxygenase Inhibitors/blood , Cyclooxygenase Inhibitors/metabolism , Dogs , Dose-Response Relationship, Drug , Kinetics , Lactones/metabolism , Lactones/urine , Male , Metabolic Clearance Rate , Rats , Rats, Sprague-Dawley , Species Specificity , Sulfones , Tissue Distribution
18.
Mol Cell Biol ; 20(18): 6799-805, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10958676

ABSTRACT

Oncoproteins from DNA tumor viruses such as adenovirus E1a, simian virus 40 T antigen, and human papillomavirus E7 contain an LXCXE sequence, which they use to bind the retinoblastoma protein (Rb) and inhibit its function. Cellular proteins such as histone deacetylases 1 and 2 (HDAC1 and -2) also contain an LXCXE-like sequence, which they use to interact with Rb. The LXCXE binding site in Rb was mutated to assess its role in Rb function. These mutations inhibited binding to HDAC1 and -2, which each contain an LXCXE-like sequence, but had no effect on binding to HDAC3, which lacks an LXCXE-like sequence. Mutation of the LXCXE binding site inhibited active transcriptional repression by Rb and prevented it from effectively repressing the cyclin E and A gene promoters. In contrast, mutations in the LXCXE binding site did not prevent Rb from binding and inactivating E2F. Thus, the LXCXE mutations appear to separate Rb's ability to bind and inactivate E2F from its ability to efficiently recruit HDAC1 and -2 and actively repress transcription. In transient assays, several of the LXCXE binding site mutants caused an increase in the percentage of cells in G(1) by flow cytometry, suggesting that they can arrest cells. However, this effect was transient, as none of the mutants affected cell proliferation in longer-term assays examining bromodeoxyuridine incorporation or colony formation. Our results then suggest that the LXCXE binding site is important for full Rb function. Mutation of the LXCXE binding site does not inhibit binding of the BRG1 ATPase component of the SWI/SNF nucleosome remodeling complex, which has been shown previously to be important for Rb function. Indeed, overexpression of BRG1 and Rb in cells deficient for the proteins led to stable growth inhibition, suggesting a cooperative role for SWI/SNF and the LXCXE binding site in efficient Rb function.


Subject(s)
Carrier Proteins , Cell Cycle Proteins , Repressor Proteins , Retinoblastoma Protein/physiology , Adenovirus E1A Proteins/genetics , Animals , Binding Sites , Cell Division , Cell Line , Chlorocebus aethiops , Cyclin A/genetics , Cyclin E/genetics , DNA Helicases , DNA-Binding Proteins/genetics , E2F Transcription Factors , Histone Deacetylase 1 , Histone Deacetylase 2 , Histone Deacetylases/genetics , Humans , Mutagenesis , Nuclear Proteins/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma-Binding Protein 1 , Transcription Factor DP1 , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Tumor Cells, Cultured , Viral Proteins
19.
Proc Natl Acad Sci U S A ; 97(12): 6391-6, 2000 Jun 06.
Article in English | MEDLINE | ID: mdl-10841546

ABSTRACT

zfh-1 is a zinc finger/homeodomain transcriptional repressor in Drosophila that regulates differentiation of muscle and gonadal cells and is also expressed in the central nervous system (CNS). Binding sites for zfh-1 overlap with those for snail, and like snail, it recruits the corepressor CtBP-1. The protein ZEB-1 appears to be a vertebrate homologue of zfh-1 and is expressed in several tissues including muscle, CNS, and T lymphocytes, and during skeletal differentiation. Mutation of the ZEB-1 gene led to a severe T cell phenotype and skeletal defects but, interestingly, no defects were evident in other ZEB-1-expressing tissues. These results suggested that another ZEB-1-related factor may compensate for the loss of ZEB-1 in other tissues. Here, we characterize such a ZEB-1-related protein, which we have termed as ZEB-2. The overall organization of ZEB-2 is similar to ZEB-1 and zfh-1 and it has similar biochemical properties: it binds E boxes and interacts with CtBP-1 to repress transcription. However, there are also differences between ZEB-1 and ZEB-2, both in activity and tissue distribution. Whereas ZEB-1 and ZEB-2 overlap in skeletal muscle and CNS (providing an explanation for why mutation of ZEB-1 alone has little effect in these tissues), they show a different pattern of expression in lymphoid cells. ZEB-1, but not ZEB-2, is expressed in T cells from the thymus ZEB-2 appears to be expressed on splenic B cells. Additionally, ZEB-2 inhibits a wider spectrum of transcription factors than ZEB-1.


Subject(s)
DNA-Binding Proteins/physiology , Repressor Proteins/physiology , Zinc Fingers , DNA-Binding Proteins/genetics , Drosophila Proteins , Female , Gene Expression , Humans , Transcription Factors/physiology , Tumor Cells, Cultured
20.
Cell ; 101(1): 79-89, 2000 Mar 31.
Article in English | MEDLINE | ID: mdl-10778858

ABSTRACT

We present evidence that Rb forms a repressor containing histone deacetylase (HDAC) and the hSWI/SNF nucleosome remodeling complex, which inhibits transcription of genes for cyclins E and A and arrests cells in the G1 phase of the cell cycle. Phosphorylation of Rb by cyclin D/cdk4 disrupts association with HDAC, relieving repression of the cyclin E gene and G1 arrest. However, the Rb-hSWI/SNF complex persists and is sufficient to maintain repression of the cyclin A and cdc2 genes, inhibiting exit from S phase. HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF then appear to maintain the order of cyclin E and A expression during the cell cycle, which in turn regulates exit from G1 and from S phase, respectively.


Subject(s)
CDC2-CDC28 Kinases , G1 Phase , Histone Deacetylases/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins , Repressor Proteins/metabolism , Retinoblastoma Protein/metabolism , S Phase , Transcription Factors/metabolism , Binding Sites , Carrier Proteins/metabolism , Cell Cycle , Cell Division , Cyclin A/genetics , Cyclin D , Cyclin E/genetics , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , DNA Helicases , Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Humans , Hydroxamic Acids/pharmacology , Phosphorylation , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/metabolism , Transcription, Genetic , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL