Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808649

ABSTRACT

Maintenance of immune homeostasis to the intestinal mictrobiota is dependent on a population of effector regulatory T (eTreg) cells that develop from microbiota-reactive induced (i)Treg cells. A cardinal feature of eTreg cells is their production of IL-10, which plays a non-redundant role in immune tolerance of commensal microbes. Here, we identify an unexpected role for IL-2-induced Stat3 signaling to program iTreg cells for eTreg cell differentiation and Il10 transcriptional competency. IL-2 proved to be both necessary and sufficient for eTreg cell development - contingent on Stat3 output of the IL-2 receptor coordinate with IL-2 signaling during early Treg cell commitment. Induction of iTreg cell programming in absence of IL-2-induced Stat3 signaling resulted in impaired eTreg cell differentiation and a failure to produce IL-10. An IL-2 mutein with reduced affinity for the IL-2Rγ (γ c ) chain was found to have blunted IL-2R Stat3 output, resulting in a deficiency of Il10 transcriptional programming that could not be fully rescued by Stat3 signaling subsequent to an initial window of iTreg cell differentiation. These findings expose a heretofore unappreciated role of IL-2 signaling that acts early to program subsequent production of IL-10 by developing eTreg cells, with broad implications for IL-2-based therapeutic interventions in immune-mediated diseases.

2.
JCI Insight ; 5(22)2020 11 19.
Article in English | MEDLINE | ID: mdl-33208555

ABSTRACT

The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.


Subject(s)
Bone Marrow Cells/physiology , Hematopoiesis , Hematopoietic Stem Cells/physiology , Interleukin-10/metabolism , Mesenchymal Stem Cells/physiology , Stromal Cells/physiology , T-Lymphocytes, Regulatory/immunology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Cell Communication , Cell Proliferation , Cells, Cultured , Coculture Techniques , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mice , Mice, Inbred C57BL , Stromal Cells/cytology , Stromal Cells/immunology
3.
Nature ; 583(7818): 720-728, 2020 07.
Article in English | MEDLINE | ID: mdl-32728244

ABSTRACT

Transcription factors are DNA-binding proteins that have key roles in gene regulation1,2. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes3-6. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP-seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Datasets as Topic , Enhancer Elements, Genetic/genetics , Hep G2 Cells , Humans , Nucleotide Motifs/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Transcription Factors/metabolism
4.
Genome Med ; 8(1): 74, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27401066

ABSTRACT

BACKGROUND: The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. METHODS: To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. RESULTS: Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. CONCLUSIONS: Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets for the treatment of various cancers.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Liver X Receptors/genetics , PPAR gamma/genetics , Cell Proliferation , Chromatin/chemistry , Chromatin/metabolism , Chromatin Assembly and Disassembly , Energy Metabolism/genetics , Glutathione/metabolism , HT29 Cells , Humans , Liver X Receptors/metabolism , Oxidative Stress/genetics , PPAR gamma/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...