Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1379-1392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695167

ABSTRACT

BACKGROUND: Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions is the global leading cause of death. The most common and effective means to reduce these major adverse cardiovascular events, including myocardial infarction and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, we know little regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. METHODS: Smooth muscle cell lineage-tracing Apoe-/- mice were fed a high-cholesterol Western diet for 18 weeks and then a zero-cholesterol standard laboratory diet for 12 weeks before treating them with an IL (interleukin)-1ß or control antibody for 8 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of smooth muscle cell and other lesion cells by smooth muscle cell lineage tracing combined with single-cell RNA sequencing, cytometry by time-of-flight, and immunostaining plus high-resolution confocal microscopic z-stack analysis. RESULTS: Lipid lowering by switching Apoe-/- mice from a Western diet to a standard laboratory diet reduced LDL cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden, as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1ß antibody treatment after diet-induced reductions in lipids resulted in multiple detrimental changes including increased plaque burden and brachiocephalic artery lesion size, as well as increasedintraplaque hemorrhage, necrotic core area, and senescence as compared with IgG control antibody-treated mice. Furthermore, IL-1ß antibody treatment upregulated neutrophil degranulation pathways but downregulated smooth muscle cell extracellular matrix pathways likely important for the protective fibrous cap. CONCLUSIONS: Taken together, IL-1ß appears to be required for the maintenance of standard laboratory diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.


Subject(s)
Atherosclerosis , Disease Models, Animal , Interleukin-1beta , Mice, Knockout, ApoE , Myocytes, Smooth Muscle , Plaque, Atherosclerotic , Animals , Interleukin-1beta/metabolism , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Atherosclerosis/genetics , Mice , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Male , Diet, Western , Mice, Inbred C57BL , Aorta/pathology , Aorta/metabolism , Aorta/drug effects , Aortic Diseases/pathology , Aortic Diseases/prevention & control , Aortic Diseases/genetics , Aortic Diseases/metabolism , Diet, High-Fat , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Brachiocephalic Trunk/pathology , Brachiocephalic Trunk/metabolism , Brachiocephalic Trunk/drug effects
2.
Nat Aging ; 3(1): 9-10, 2023 01.
Article in English | MEDLINE | ID: mdl-37118515
4.
Arterioscler Thromb Vasc Biol ; 43(2): 203-211, 2023 02.
Article in English | MEDLINE | ID: mdl-36519470

ABSTRACT

BACKGROUND: The Myh11 promoter is extensively used as a smooth muscle cell (SMC) Cre-driver and is regarded as the most restrictive and specific promoter available to study SMCs. Unfortunately, in the existing Myh11-CreERT2 mouse, the transgene was inserted on the Y chromosome precluding the study of female mice. Given the importance of including sex as a biological variable and that numerous SMC-based diseases have a sex-dependent bias, the field has been tremendously limited by the lack of a model to study both sexes. Here, we describe a new autosomal Myh11-CreERT2 mouse (referred to as Myh11-CreERT2-RAD), which allows for SMC-specific lineage tracing and gene knockout studies in vivo using both male and female mice. METHODS: A Myh11-CreERT2-RAD transgenic C57BL/6 mouse line was generated using bacterial artificial chromosome clone RP23-151J22 modified to contain a Cre-ERT2 after the Myh11 start codon. Myh11-CreERT2-RAD mice were crossed with 2 different fluorescent reporter mice and tested for SMC-specific labeling by flow cytometric and immunofluorescence analyses. RESULTS: Myh11-CreERT2-RAD transgene insertion was determined to be on mouse chromosome 2. Myh11-CreERT2-RAD fluorescent reporter mice showed Cre-dependent, tamoxifen-inducible labeling of SMCs equivalent to the widely used Myh11-CreERT2 mice. Labeling was equivalent in both male and female Cre+ mice and was limited to vascular and visceral SMCs and pericytes in various tissues as assessed by immunofluorescence. CONCLUSIONS: We generated and validated the function of an autosomal Myh11-CreERT2-RAD mouse that can be used to assess sex as a biological variable with respect to the normal and pathophysiological functions of SMCs.


Subject(s)
Integrases , Myocytes, Smooth Muscle , Mice , Animals , Male , Female , Mice, Transgenic , Gene Knockout Techniques , Integrases/genetics , Integrases/metabolism , Mice, Knockout , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Cell Lineage , Tamoxifen
5.
Am J Physiol Heart Circ Physiol ; 323(6): H1212-H1220, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36306211

ABSTRACT

The fat mass and obesity gene (FTO) is a N6-methyladenosine RNA demethylase that was initially linked by Genome-wide association studies to increased rates of obesity. Subsequent studies have revealed multiple mass-independent effects of the gene, including cardiac myocyte contractility. We created a mouse with a conditional and inducible smooth muscle cell deletion of Fto (Myh11 Cre+ Ftofl/fl) and did not observe any changes in mouse body mass or mitochondrial metabolism. However, the mice had significantly decreased blood pressure (hypotensive), despite increased heart rate and sodium, and significantly increased plasma renin. Remarkably, the third-order mesenteric arteries from these mice had almost no myogenic tone or capacity to constrict to smooth muscle depolarization or phenylephrine. Microarray analysis from Fto-/--isolated smooth muscle cells demonstrated a significant decrease in serum response factor (Srf) and the downstream effectors Acta2, Myocd, and Tagln; this was confirmed in cultured human coronary arteries with FTO siRNA. We conclude Fto is an important component to the contractility of smooth muscle cells.NEW & NOTEWORTHY We show a key role for the fat mass obesity (FTO) gene in regulating smooth muscle contractility, possibly by methylation of serum response factor (Srf).


Subject(s)
Genome-Wide Association Study , Serum Response Factor , Mice , Humans , Animals , Serum Response Factor/genetics , Myocytes, Smooth Muscle/metabolism , Obesity/genetics , Muscle Contraction , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
6.
Arterioscler Thromb Vasc Biol ; 42(8): 942-956, 2022 08.
Article in English | MEDLINE | ID: mdl-35735018

ABSTRACT

BACKGROUND: Smooth muscle cells (SMCs) in atherosclerotic plaque take on multiple nonclassical phenotypes that may affect plaque stability and, therefore, the likelihood of myocardial infarction or stroke. However, the mechanisms by which these cells affect stability are only beginning to be explored. METHODS: In this study, we investigated the contribution of inflammatory MCP1 (monocyte chemoattractant protein 1) produced by both classical Myh11 (myosin heavy chain 11)+ SMCs and SMCs that have transitioned through an Lgals3 (galectin 3)+ state in atherosclerosis using smooth muscle lineage tracing mice that label all Myh11+ cells and a dual lineage tracing system that targets Lgals3-transitioned SMC only. RESULTS: We show that loss of MCP1 in all Myh11+ smooth muscle results in a paradoxical increase in plaque size and macrophage content, driven by a baseline systemic monocytosis early in atherosclerosis pathogenesis. In contrast, knockout of MCP1 in Lgals3-transitioned SMCs using a complex dual lineage tracing system resulted in lesions with an increased Acta2 (actin alpha 2, smooth muscle)+ fibrous cap and decreased investment of Lgals3-transitioned SMCs, consistent with increased plaque stability. Finally, using flow cytometry and single-cell RNA sequencing, we show that MCP1 produced by Lgals3-transitioned SMCs influences multiple populations of inflammatory cells in late-stage plaques. CONCLUSIONS: MCP1 produced by classical SMCs influences monocyte levels beginning early in disease and was atheroprotective, while MCP1 produced by the Lgals3-transitioned subset of SMCs exacerbated plaque pathogenesis in late-stage disease. Results are the first to determine the function of Lgals3-transitioned inflammatory SMCs in atherosclerosis and highlight the need for caution when considering therapeutic interventions involving MCP1.


Subject(s)
Atherosclerosis , Chemokine CCL2 , Plaque, Atherosclerotic , Animals , Atherosclerosis/pathology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/pathology
8.
Nat Metab ; 3(2): 166-181, 2021 02.
Article in English | MEDLINE | ID: mdl-33619382

ABSTRACT

Stable atherosclerotic plaques are characterized by a thick, extracellular matrix-rich fibrous cap populated by protective ACTA2+ myofibroblast (MF)-like cells, assumed to be almost exclusively derived from smooth muscle cells (SMCs). Herein, we show that in murine and human lesions, 20% to 40% of ACTA2+ fibrous cap cells, respectively, are derived from non-SMC sources, including endothelial cells (ECs) or macrophages that have undergone an endothelial-to-mesenchymal transition (EndoMT) or a macrophage-to-mesenchymal transition (MMT). In addition, we show that SMC-specific knockout of the Pdgfrb gene, which encodes platelet-derived growth factor receptor beta (PDGFRß), in Apoe-/- mice fed a Western diet for 18 weeks resulted in brachiocephalic artery lesions nearly devoid of SMCs but with no changes in lesion size, remodelling or indices of stability, including the percentage of ACTA2+ fibrous cap cells. However, prolonged Western diet feeding of SMC Pdgfrb-knockout mice resulted in reduced indices of stability, indicating that EndoMT- and MMT-derived MFs cannot compensate indefinitely for loss of SMC-derived MFs. Using single-cell and bulk RNA-sequencing analyses of the brachiocephalic artery region and in vitro models, we provide evidence that SMC-to-MF transitions are induced by PDGF and transforming growth factor-ß and dependent on aerobic glycolysis, while EndoMT is induced by interleukin-1ß and transforming growth factor-ß. Together, we provide evidence that the ACTA2+ fibrous cap originates from a tapestry of cell types, which transition to an MF-like state through distinct signalling pathways that are either dependent on or associated with extensive metabolic reprogramming.


Subject(s)
Energy Metabolism/genetics , Plaque, Atherosclerotic/pathology , Receptor, Platelet-Derived Growth Factor beta/genetics , Actins/metabolism , Animals , Apolipoproteins E/genetics , Brachial Artery/pathology , Diet, Western , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism
9.
Arterioscler Thromb Vasc Biol ; 41(1): 284-301, 2021 01.
Article in English | MEDLINE | ID: mdl-33054397

ABSTRACT

OBJECTIVE: Smooth muscle cells and pericytes display remarkable plasticity during injury and disease progression. Here, we tested the hypothesis that perivascular cells give rise to Klf4-dependent macrophage-like cells that augment adipose tissue (AT) inflammation and metabolic dysfunction associated with diet-induced obesity (DIO). Approach and Results: Using Myh11-CreERT2 eYFP (enhanced yellow fluorescent protein) mice and flow cytometry of the stromovascular fraction of epididymal AT, we observed a large fraction of smooth muscle cells and pericytes lineage traced eYFP+ cells expressing macrophage markers. Subsequent single-cell RNA sequencing, however, showed that the majority of these cells had no detectable eYFP transcript. Further exploration revealed that intraperitoneal injection of tamoxifen in peanut oil, used for generating conditional knockout or reporter mice in thousands of previous studies, resulted in large increase in the autofluorescence and false identification of macrophages within epididymal AT as being eYFP+; and unintended proinflammatory consequences. Using newly generated Myh11-DreERT2tdTomato mice given oral tamoxifen, we virtually eliminated the problem with autofluorescence and identified 8 perivascular cell dominated clusters, half of which were altered upon DIO. Given that perivascular cell KLF4 (kruppel-like factor 4) can have beneficial or detrimental effects, we tested its role in obesity-associated AT inflammation. While smooth muscle cells and pericytes-specific Klf4 knockout (smooth muscle cells and pericytes Klf4Δ/Δ) mice were not protected from DIO, they displayed improved glucose tolerance upon DIO, and showed marked decreases in proinflammatory macrophages and increases in LYVE1+ lymphatic endothelial cells in the epididymal AT. CONCLUSIONS: Perivascular cells within the AT microvasculature dynamically respond to DIO and modulate tissue inflammation and metabolism in a KLF4-dependent manner.


Subject(s)
Adipose Tissue/metabolism , Cell Plasticity , Kruppel-Like Transcription Factors/metabolism , Myocytes, Smooth Muscle/metabolism , Obesity/metabolism , Panniculitis/metabolism , Pericytes/metabolism , Adipose Tissue/pathology , Animals , Blood Glucose/metabolism , Cell Lineage , Diet, High-Fat , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Inflammation Mediators/metabolism , Insulin Resistance , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Knockout , Myocytes, Smooth Muscle/pathology , Obesity/etiology , Obesity/genetics , Obesity/pathology , Panniculitis/etiology , Panniculitis/genetics , Panniculitis/pathology , Pericytes/pathology
10.
Am J Physiol Heart Circ Physiol ; 296(4): H1027-37, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19168719

ABSTRACT

There is clear evidence that the phenotypic modulation of smooth muscle cells (SMCs) contributes to the pathophysiology of vascular disease. Phenotypic modulation refers to the unique ability of SMCs to alter their phenotype in response to extracellular stimuli and is hallmarked by the loss of SMC marker gene expression. The transcription factor Krüppel-like factor 4 (KLF4) is a known powerful negative regulator of SMC marker gene expression that works, in part, by decreasing the expression of the serum response factor (SRF) myocardin. KLF4 is not expressed in healthy adult SMCs but is increased in SMCs in response to vascular injury in vivo or PDGF-BB treatment in vitro. The aim of the present study was to determine the molecular mechanisms that regulate the expression of KLF4 in phenotypically modulated SMCs. The results demonstrated that the transcription factor stimulating protein-1 (Sp1) regulated the expression of KLF4 in SMCs. The KLF4 promoter contains three consensus Sp1 binding sites. Using a series of truncated KLF4 promoters, we showed that only fragments containing these Sp1 sites could be activated by PDGF-BB. In addition, overexpression of Sp1 alone was sufficient to increase the activity of the KLF4 promoter. Moreover, inhibiting Sp1 expression with small-interfering RNA attenuated the effects of PDGF-BB on KLF4 expression. Mutation of the three Sp1 sites within the KLF4 promoter abolished both baseline and PDGF-BB-induced activity. Finally, the results demonstrated enhanced Sp1 binding to the KLF4 promoter in SMCs treated with PDGF-BB in vitro and following vascular injury in vivo. Taken together, the results suggest a novel role for Sp1 in increasing the expression of KLF4 in phenotypically modulated SMCs.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Kruppel-Like Transcription Factors/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Platelet-Derived Growth Factor/pharmacology , Sp1 Transcription Factor/metabolism , Animals , Base Sequence , Becaplermin , Cells, Cultured , Disease Models, Animal , Kruppel-Like Factor 4 , Male , Molecular Sequence Data , Muscle, Smooth, Vascular/cytology , Phenotype , Protein Binding/physiology , Proto-Oncogene Proteins c-sis , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , Sp1 Transcription Factor/genetics , Transfection , Up-Regulation/physiology , Vascular Diseases/metabolism
11.
Am J Physiol Heart Circ Physiol ; 296(2): H442-52, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19028801

ABSTRACT

Platelet-derived growth factor (PDGF)-BB is a well-known smooth muscle (SM) cell (SMC) phenotypic modulator that signals by binding to PDGF alphaalpha-, alphabeta-, and betabeta-membrane receptors. PDGF-DD is a recently identified PDGF family member, and its role in SMC phenotypic modulation is unknown. Here we demonstrate that PDGF-DD inhibited expression of multiple SMC genes, including SM alpha-actin and SM myosin heavy chain, and upregulated expression of the potent SMC differentiation repressor gene Kruppel-like factor-4 at the mRNA and protein levels. On the basis of the results of promoter-reporter assays, changes in SMC gene expression were mediated, at least in part, at the level of transcription. Attenuation of the SMC phenotypic modulatory activity of PDGF-DD by pharmacological inhibitors of ERK phosphorylation and by a small interfering RNA to Kruppel-like factor-4 highlight the role of these two pathways in this process. PDGF-DD failed to repress SM alpha-actin and SM myosin heavy chain in mouse SMCs lacking a functional PDGF beta-receptor. Importantly, PDGF-DD expression was increased in neointimal lesions in the aortic arch region of apolipoprotein C-deficient (ApoE(-/-)) mice. Furthermore, human endothelial cells exposed to an atherosclerosis-prone flow pattern, as in vascular regions susceptible to the development of atherosclerosis, exhibited a significant increase in PDGF-DD expression. These findings demonstrate a novel activity for PDGF-DD in SMC biology and highlight the potential contribution of this molecule to SMC phenotypic modulation in the setting of disturbed blood flow.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lymphokines/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Platelet-Derived Growth Factor/metabolism , Actins/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/physiopathology , Calcium-Binding Proteins/metabolism , Cells, Cultured , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Genes, Reporter , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Lymphokines/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Myosin Heavy Chains/metabolism , Phenotype , Phosphorylation , Platelet-Derived Growth Factor/genetics , Promoter Regions, Genetic , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Rats , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Recombinant Proteins/metabolism , Regional Blood Flow , Stress, Mechanical , Time Factors , Up-Regulation , ets-Domain Protein Elk-1/metabolism , Calponins
12.
Circ Res ; 101(8): 792-801, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17704209

ABSTRACT

Atherosclerosis is a vascular disease characterized by lipid deposition and inflammation within the arterial wall. Oxidized phospholipids (oxPLs), such as 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) and its constituents 1-palmytoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are concentrated within atherosclerotic lesions and are known to be potent proinflammatory mediators. Phenotypic switching of smooth muscle cells (SMCs) plays a critical role in the development, progression, and end-stage clinical consequences of atherosclerosis, yet little is known regarding the effects of specific oxPLs on SMC phenotype. The present studies were focused on determining whether oxPLs regulate expression of SMC differentiation marker genes and the molecular mechanisms involved. Results showed that POVPC and PGPC induced profound suppression of smooth muscle (SM) alpha-actin and SM myosin heavy chain expression while simultaneously increasing expression of MCP-1, MCP-3, and cytolysin. OxPLs also induced nuclear translocation of Krüppel-like transcription factor 4 (KLF4), a known repressor of SMC marker genes. siRNA targeting of KLF4 nearly blocked POVPC-induced suppression of SMC marker genes, and myocardin. POVPC-induced repression of SMC marker genes was also significantly attenuated in KLF4 knockout SMCs. Taken together, these results suggest a novel role for oxPLs in phenotypic modulation of SMCs and indicate that these effects are dependent on the transcription factor, KLF4. These results may have important novel implications for the mechanisms by which oxPLs contribute to the pathogenesis of atherosclerosis.


Subject(s)
Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Phospholipids/metabolism , Animals , Cells, Cultured , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/biosynthesis , Kruppel-Like Transcription Factors/genetics , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Oxidation-Reduction , Phospholipids/genetics , Phospholipids/physiology , Rats
13.
Cell Cycle ; 6(6): 739-49, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17374997

ABSTRACT

The transition of vascular smooth muscle cells (VSMCs) from G2 phase into the M (mitosis) phase of the cell cycle is a tightly controlled process. As an arterial SMC prepares for a G2/M transition, the cell has primed the Cdc2/cyclinB1 complex for activation by the phosphorylation of threonine-161 residue on Cdc2. This phosphorylation is necessary but not sufficient for the VSMC to enter into the M phase. In order to enter into mitosis, a phosphatase, Cdc25C, must first dephosphorylate two other critical residues: tyrosine-15 and threonine-14. If Cdc25C phosphatase activity is blocked, VSMC entry into mitosis is delayed. However, how the activity of Cdc25C is regulated has not been fully illustrated. In an earlier published study we have demonstrated that exposure of the VSMC line, PAC-1, to Transforming growth factor-beta1 (TGF-beta1), activated PKN (a RhoA-dependent kinase). Here we show that exposure to TGF-beta1 delays the G2/M transition by 2 hrs in G1/S synchronized and released PAC-1 culture. This delay is abolished by the RhoA kinase inhibitors, HA1077 or Y-27632. More importantly, RNAi knockdown of PKN expression prevents the G2/M transition delay induced by TGF-beta1. Changes in PKN activity temporally correlates to the G2/M transition timing. Moreover, Cdc25C is phosphorylated by the TGF-beta1-activated PKN. PKN and Cdc25C coimmunoprecipitate with each other. Finally, PKN and Cdc25C colocalize to the nuclear region only during the critical period of time prior to entry into the M phase. Our data demonstrate that Cdc25C activity is negatively regulated by TGF-beta1-stimulated PKN. Once activated through TGF-beta1 signaling, PKN binds to and phosphorylates Cdc25C. The physical interaction and phosphorylation result in an inactivation of Cdc25C and delay the VSMC entry into the M stage of the cell cycle.


Subject(s)
Cell Division/physiology , G2 Phase/physiology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/physiology , Signal Transduction/physiology , Animals , Cells, Cultured , Enzyme Activation/physiology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Protein Kinase C , Protein Serine-Threonine Kinases/genetics , Rats
14.
J Biol Chem ; 280(35): 31172-81, 2005 Sep 02.
Article in English | MEDLINE | ID: mdl-15980430

ABSTRACT

Differentiated vascular smooth muscle cells (SMCs) exhibit a work phenotype characterized by expression of several well documented contractile apparatus-associated proteins. However, SMCs retain the ability to de-differentiate into a proliferative phenotype, which is involved in the progression of vascular diseases such as atherosclerosis and restenosis. Understanding the mechanisms involved in maintaining SMC differentiation is critical for preventing proliferation associated with vascular disease. In this study, the molecular mechanisms through which transforming growth factor-beta1 (TGF-beta1) induces differentiation of SMCs were examined. TGF-beta1 stimulated actin re-organization, inhibited cell proliferation, and up-regulated SMC marker gene expression in PAC-1 SMCs. These effects were blocked by pretreatment of cells with either HA1077 or Y-27632, which inhibit the kinases downstream of RhoA. Moreover, TGF-beta1 activated RhoA and its downstream target PKN. Overexpression of active PKN alone was sufficient to increase the transcriptional activity of the promoters that control expression of smooth muscle (SM) alpha-actin, SM-myosin heavy chain, and SM22alpha. In addition, PKN increased the activities of serum-response factor (SRF), GATA, and MEF2-dependent enhancer-reporters. RNA interference-mediated inhibition of PKN abolished TGF-beta1-induced activation of SMC marker gene promoters. Finally, examination of MAPK signaling demonstrated that TGF-beta1 increased the activity of p38 MAPK, which was required for activation of the SMC marker gene promoters. Co-expression of dominant negative p38 MAPK was sufficient to block PKN-mediated activation of the SMC marker gene promoters as well as the serum-response factor, GATA, and MEF2 enhancers. Taken together, these results identify components of an important intracellular signaling pathway through which TGF-beta1 activates PKN to promote differentiation of SMCs.


Subject(s)
Gene Expression Regulation , Muscle, Smooth/physiology , Myocytes, Smooth Muscle/physiology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Transforming Growth Factor beta/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Actins/metabolism , Animals , Cell Differentiation/physiology , Cell Line , Cell Proliferation , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Genes, Reporter , Genetic Markers , JNK Mitogen-Activated Protein Kinases/metabolism , Muscle, Smooth/cytology , Myocytes, Smooth Muscle/cytology , Promoter Regions, Genetic , Protein Kinase C , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Rats , Signal Transduction/physiology , Transcription Factors/metabolism , Transforming Growth Factor beta1 , p38 Mitogen-Activated Protein Kinases/genetics , rhoA GTP-Binding Protein/metabolism
15.
Mol Cell Biochem ; 242(1-2): 153-61, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12619878

ABSTRACT

The myocyte enhancer factor-2 (MEF2) family of transcription factors regulates transcription of muscle-dependent genes in cardiac, skeletal and smooth muscle. They are activated by calcium/calmodulin (CaM)-dependent protein kinases I and IV and silenced by CaM KIIdeltaC. MEF2 is held in an inactive form by the class II histone deacetylases (HDAC) until phosphorylated by either CaM kinase I or IV. Upon phosphorylation, HDAC is transported out of the nucleus via a 14-3-3 dependent mechanism freeing MEF2 to drive transcription. The 14-3-3 chaperone protein exists as a homodimer. In the region of homodimerization, there are two canonical CaM kinase II phosphorylation sites (ser60 and ser65). In vitro phosphorylation assay results indicate that 14-3-3beta is indeed a substrate for CaM kinase II. We hypothesize that CaM kinase IIdeltaC phosphorylation of 14-3-3beta will disrupt homodimer formation resulting in the return of HDAC to the nucleus and their reassociation with MEF2. To test this, we mutated serines 60 and 65 of 14-3-3beta to aspartates to mimic the phosphorylated state. In MEF2 enhancer-reporter assays in smooth muscle cells, expression of the 14-3-3beta double mutant attenuated MEF2-enhancer activity driven by CaM kinase I or IV. The intracellular fate of HDAC4 was followed by transfection of smooth muscle cells with an HDAC4-Green Fluorescent Protein fusion hybrid. The 14-3-3beta double mutant prevented HDAC4 cytoplasmic localization in the presence of active CaM kinase I or IV. These data suggest that the mechanism of CaM kinase IIdeltaC silencing of MEF-2-dependent genes is by phosphorylation of 14-3-3beta, which allows HDAC to return to the nucleus to reform a complex with MEF2, thereby silencing MADS box-dependent gene induction in smooth muscle.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Gene Silencing , Histone Deacetylases/classification , Histone Deacetylases/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Repressor Proteins/classification , Repressor Proteins/metabolism , Tyrosine 3-Monooxygenase/metabolism , 14-3-3 Proteins , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calmodulin/metabolism , Cell Line , Cell Nucleus/enzymology , Cytoplasm/enzymology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Enzymologic , Genes, Reporter/genetics , MEF2 Transcription Factors , Major Histocompatibility Complex/genetics , Muscle, Smooth, Vascular/enzymology , Mutation/genetics , Myocytes, Smooth Muscle/enzymology , Myogenic Regulatory Factors , Phenylephrine/pharmacology , Phosphorylation , Promoter Regions, Genetic/genetics , Rats , Transcription Factors/genetics , Transcription, Genetic , Transcriptional Activation , Tyrosine 3-Monooxygenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...