Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Cancer Rep (Hoboken) ; 7(3): e2049, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38522013

ABSTRACT

BACKGROUND: Metastasis has been a cause of the poor prognosis and cancer relapse of triple-negative breast cancer (TNBC) patients. The metastatic nature of TNBC is contributed by the breast cancer stem cells (CSCs) which have been implicated in tumorigenesis. Higher expression of epidermal growth factor receptor (EGFR) in breast CSCs has been used as a molecular target for breast cancer therapeutics. Thus, it necessitates the design and generation of efficacious EGFR inhibitors to target the downstream signaling associated with the cellular proliferation and tumorigenesis of breast cancer. AIM: To generate efficacious EGFR inhibitors that can potentiate the chemotherapeutic-mediated mitigation of breast cancer tumorigenesis. METHODS AND RESULTS: We identified small molecule EGFR inhibitors using molecular docking studies. In-vitro screening of the compounds was undertaken to identify the cytotoxicity profile of the small-molecule EGFR inhibitors followed by evaluation of the non-cytotoxic compounds in modulating the doxorubicin-induced migration, in-vitro tumorigenesis potential, and their effect on the pro-apoptotic genes' and protein markers' expression in TNBC cells. Compound 1e potentiated the doxorubicin-mediated inhibitory effect on proliferation, migration, in-vitro tumorigenesis capacity, and induction of apoptosis in MDA-MB-231 cells, and in the sorted CD24+-breast cancer cells and CD24-/CD44+-breast CSC populations. Orthotopic xenotransplantation of the breast CSCs-induced tumors in C57BL/6J mice was significantly inhibited by the low dose of Doxorubicin in the presence of compound 1e as depicted by molecular and immunohistochemical analysis. CONCLUSION: Thus, the study suggests that EGFR inhibition-mediated sensitization of the aggressive and metastatic breast CSCs in TNBCs toward chemotherapeutics may reduce the relapse of the disease.


Subject(s)
ErbB Receptors , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Carcinogenesis , Cell Transformation, Neoplastic , Doxorubicin/pharmacology , ErbB Receptors/antagonists & inhibitors , Mice, Inbred C57BL , Molecular Docking Simulation , Neoplasm Recurrence, Local , Neoplastic Stem Cells , Recurrence , Triple Negative Breast Neoplasms/drug therapy
2.
Molecules ; 27(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36235254

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is an endogenous DNA sensor that synthesizes cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP) from ATP and GTP. 2'3'-cGAMP activates the stimulator of interferon genes (STING) pathway, resulting in the production of interferons and pro-inflammatory cytokines. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the phosphodiesterase that negatively regulates the STING pathway by hydrolyzing 2'3'-cGAMP. It has been established that the cGAS-STING pathway plays a major role in inhibiting tumor growth by upregulating T cell response. Herein, we demonstrate that AVA-NP-695, a selective and highly potent ENPP1 inhibitor, apart from the immunomodulatory effect also modulates cancer metastasis by negatively regulating epithelial-mesenchymal transition (EMT). We established that the combined addition of 2'3'-cGAMP and AVA-NP-695 significantly abrogated the transforming growth factor beta (TGF-ꞵ)-induced EMT in MDA-MB-231 cells. Finally, results from the in vivo study showed superior tumor growth inhibition and impact on tumor metastasis of AVA-NP-695 compared to Olaparib and PD-1 in a syngeneic 4T1 breast cancer mouse model. The translation of efficacy from in vitro to in vivo 4T1 tumor model provides a strong rationale for the therapeutic potential of AVA-NP-695 against triple-negative breast cancer (TNBC) as an immunomodulatory and anti-metastatic agent.


Subject(s)
Programmed Cell Death 1 Receptor , Triple Negative Breast Neoplasms , Adenosine Triphosphate/metabolism , Animals , DNA , Guanosine Triphosphate , Humans , Interferons , Membrane Proteins/metabolism , Mice , Nucleotidyltransferases/metabolism , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Transforming Growth Factor beta
3.
Front Biosci (Schol Ed) ; 13(2): 157-172, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34879468

ABSTRACT

Eribulin, a synthetic marine based drug has received extensive attention recently due to its promising anticancer activities against a wide variety of cancer types as evidenced by preclinical and clinical data. Eribulin is predominantly shown to exhibit microtubule inhibitory activity, however recent reports indicate that it acts via multiple molecular mechanisms targeting both the cancer cells as well as the tumor microenvironment. In this review, a comprehensive account on various modes of action of eribulin on cancer cells is presented along with important clinical aspects in the management of cancer through a comprehensive literature review. We have also highlighted approaches including combination therapy to improve the efficacy of eribulin in cancer treatment. Currently, eribulin is used to treat heavily pretreated patients with metastatic breast cancer, for which it gained FDA approval a decade ago and more recently, it has been approved for treating anthracycline-pretreated patients with metastatic liposarcoma. Novel therapeutic strategies should aim at resolving the toxicity and resistance conferred due to eribulin treatment so that it could be integrated in the clinics as a first-line treatment approach.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Female , Furans/pharmacology , Furans/therapeutic use , Humans , Ketones/therapeutic use , Microtubules , Tumor Microenvironment
4.
Langmuir ; 37(15): 4449-4459, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33821655

ABSTRACT

Bipolar resistive switching using organic molecule is very promising for memory applications owing to their advantages, such as simple device structure, low manufacturing cost, stability, and flexibility. Herein we report Langmuir-Blodgett (LB) and spin-coated-film-based bipolar resistive switching devices using organic material 1,4-bis(di(1H-indol-3-yl)methyl)benzene (Indole1). The pressure-area per molecule isotherm (π-A), Brewster angle microscopy (BAM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to formulate an idea about the organization and morphology of the organic material onto thin films. On the basis of the device structure and measurement protocol, it is observed that the device made up of Indole1 shows nonvolatile resistive random access memory (RRAM) behavior with a very high memory window (∼106), data sustainability (5400 s), device yield (86.7%), and repeatability. The oxidation-reduction process and electric-field-driven conduction are the keys behind such switching behavior. Because of very good data retention, repeatability, stability, and a high device yield, the switching device designed using compound Indole1 may be a potential candidate for memory applications.

5.
RSC Adv ; 11(49): 30827-30839, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-35498942

ABSTRACT

We report herein an operationally simple, efficient and versatile procedure for the synthesis of bis-indolylmethanes via the reaction of indoles with aldehydes or ketones in the presence of silica-supported ferric chloride under grindstone conditions. The prepared supported catalyst was characterized by SEM and EDX spectroscopy. The present protocol has several advantages such as shorter reaction time, high yield, avoidance of using harmful organic solvents during the reaction and tolerance of a wide range of functional groups. Molecular docking studies targeted toward the binding site of SARS-CoV-2 main protease (3CLpro or Mpro) enzymes were investigated with the synthesized bis-indoles. Our study revealed that some of the synthesized compounds have potentiality to inhibit the SARS-CoV-2 Mpro enzyme by interacting with key amino acid residues of the active sites via hydrophobic as well as hydrogen bonding interactions.

6.
Oncotarget ; 11(34): 3244-3255, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32922663

ABSTRACT

Clinical management of bladder carcinomas (BC) remains a major challenge and demands comprehensive multi-omics analysis for better stratification of the disease. Identification of patients on risk requires identification of signatures predicting prognosis risk of the patients. Understanding the molecular alterations associated with the disease onset and progression could improve the routinely used diagnostic and therapy procedures. In this study, we investigated the aberrant changes in N-glycosylation pattern of proteins associated with tumorigenesis as well as disease progression in bladder cancer. We integrated and compared global N-glycoproteomic and proteomic profile of urine samples from bladder cancer patients at different clinicopathological stages (non-muscle invasive and muscle-invasive patients [n = 5 and 4 in each cohort]) with healthy subjects (n = 5) using SPEG method. We identified 635 N-glycopeptides corresponding to 381 proteins and 543 N-glycopeptides corresponding to 326 proteins in NMIBC and MIBC patients respectively. Moreover, we identified altered glycosylation in 41 NMIBC and 21 MIBC proteins without any significant change in protein abundance levels. In concordance with the previously published bladder cancer cell line N-glycoproteomic data, we also observed dysregulated glycosylation in ECM related proteins. Further, we identified distinct N-glycosylation pattern of CD44, MGAM, and GINM1 between NMIBC and MIBC patients, which may be associated with disease progression in bladder cancer. These aberrant protein glycosylation events would provide a novel approach for bladder carcinoma diagnosis and further define novel mechanisms of tumor initiation and progression.

7.
Genes (Basel) ; 11(7)2020 07 08.
Article in English | MEDLINE | ID: mdl-32650368

ABSTRACT

Bladder carcinoma (BC) incidence and mortality rates are increasing worldwide. The development of novel therapeutic strategies is required to improve clinical management of this cancer. Aberrant protein expression may lead to cancer initiation and progression. Therefore, the identification of these potential protein targets and limiting their expression levels would provide alternative treatment options. In this study, we utilized a liquid-chromatography tandem mass spectrometry-based global proteomics approach to identify differentially expressed proteins in bladder cancer cell lines. A total of 3913 proteins were identified in this study, of which 479 proteins were overexpressed and 141 proteins were downregulated in 4 out of 6 BC cell lines when compared with normal human urothelial cell line (TERT-NHUC). We evaluated the role of UDP-N-acetylhexosamine pyrophosphorylase (UAP1) in bladder cancer pathogenesis. The silencing of UAP1 led to reduction in proliferation, invasion, colony formation and migration capability of bladder cancer cell lines. Thus, our study reveals UAP1 as a promising therapeutic target for bladder cancer.


Subject(s)
Nucleotidyltransferases/genetics , Proteome/metabolism , Urinary Bladder Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Nucleotidyltransferases/metabolism , Proteome/genetics , Urinary Bladder Neoplasms/genetics
8.
OMICS ; 24(7): 437-450, 2020 07.
Article in English | MEDLINE | ID: mdl-32522079

ABSTRACT

Integrin α4ß7, a CD4 independent receptor of human immunodeficiency virus-1 (HIV-1) gp120, defines a subset of CD4+T cells preferentially targeted by HIV. It is also considered as a promising therapeutic target for HIV-1 infection. Despite its role in HIV acquisition and disease progression, HIV-1-mediated integrin α4ß7 signaling has not been elucidated so far. In view of this, we determined phosphoproteomic signatures of HIV-1 gp120 signaling as well as signaling mediated by the integrin α4ß7 ligand, mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1), in primary CD4+ T cells. This is the first comprehensive report on MAdCAM-1 signaling, which is believed to enhance HIV-1 replication. Importantly, we identified proteins associated with both classical and nonclassical integrin functions. We observed that HIV-1 gp120 signaling is associated with proteins that have previously not been associated with HIV-1 pathogenesis and thus, need to be explored further. There was a significant overlap in proteins identified by both MAdCAM-1 and HIV-1 gp120 signaling, which most likely represents cellular processes triggered upon interaction of HIV-1 gp120 with integrin α4ß7. Pathway analysis revealed enrichment of processes that could facilitate viral replication as well as viral entry through endocytosis. Although these results warrant independent replication and further validation, they suggest the presence of additional potential therapeutic targets. These results also suggest that combinatorial approaches for targeting both HIV-1 gp120 and MAdCAM-1 signaling may be necessary for efficient control of HIV-1 infection as well as novel innovation strategies in HIV therapeutics.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Integrins/metabolism , Signal Transduction , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cell Adhesion Molecules/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/genetics , HIV Infections/immunology , Humans , Integrins/chemistry , Models, Biological , Mucoproteins/metabolism , Phosphoproteins/metabolism , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Proteome , Proteomics/methods , Virus Internalization
9.
Biomolecules ; 10(2)2020 02 04.
Article in English | MEDLINE | ID: mdl-32033228

ABSTRACT

Tumor heterogeneity attributes substantial challenges in determining the treatment regimen. Along with the conventional treatment, such as chemotherapy and radiotherapy, targeted therapy has greater impact in cancer management. Owing to the recent advancements in proteomics, we aimed to mine and re-interrogate the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data sets which contain deep scale, mass spectrometry (MS)-based proteomic and phosphoproteomic data sets conducted on human tumor samples. Quantitative proteomic and phosphoproteomic data sets of tumor samples were explored and downloaded from the CPTAC database for six different cancers types (breast cancer, clear cell renal cell carcinoma (CCRCC), colon cancer, lung adenocarcinoma (LUAD), ovarian cancer, and uterine corpus endometrial carcinoma (UCEC)). We identified 880 phosphopeptide signatures for differentially regulated phosphorylation sites across five cancer types (breast cancer, colon cancer, LUAD, ovarian cancer, and UCEC). We identified the cell cycle to be aberrantly activated across these cancers. The correlation of proteomic and phosphoproteomic data sets identified changes in the phosphorylation of 12 kinases with unchanged expression levels. We further investigated phosphopeptide signature across five cancer types which led to the prediction of aurora kinase A (AURKA) and kinases-serine/threonine-protein kinase Nek2 (NEK2) as the most activated kinases targets. The drug designed for these kinases could be repurposed for treatment across cancer types.


Subject(s)
Aurora Kinase A/metabolism , Enzyme Activation , NIMA-Related Kinases/metabolism , Neoplasms/metabolism , Phosphoproteins/metabolism , Cell Cycle , Humans , Neoplasms/enzymology , Protein Interaction Maps , Proteomics
10.
Methods Mol Biol ; 2051: 241-264, 2020.
Article in English | MEDLINE | ID: mdl-31552632

ABSTRACT

Phosphorylation is one of the most extensively studied posttranslational modifications (PTM), which regulates cellular functions like cell growth, differentiation, apoptosis, and cell signaling. Kinase families cover a wide number of oncoproteins and are strongly associated with cancer. Identification of driver kinases is an intense area of cancer research. Thus, kinases serve as the potential target to improve the efficacy of targeted therapies. Mass spectrometry-based phosphoproteomic approach has paved the way to the identification of a large number of altered phosphorylation events in proteins and signaling cascades that may lead to oncogenic processes in a cell. Alterations in signaling pathways result in the activation of oncogenic processes predominantly regulated by kinases and phosphatases. Therefore, drugs such as kinase inhibitors, which target dysregulated pathways, represent a promising area for cancer therapy.


Subject(s)
Mass Spectrometry/methods , Neoplasms/drug therapy , Proteomics/methods , Signal Transduction , Cell Proliferation , Humans , Molecular Targeted Therapy , Neoplasms/metabolism , Phosphorylation
11.
J Clin Med ; 8(9)2019 Aug 24.
Article in English | MEDLINE | ID: mdl-31450586

ABSTRACT

Treatment of advanced and metastatic bladder carcinoma is often ineffective and displays variable clinical outcomes. Studying this aggressive molecular subtype of bladder carcinoma will lead to better understanding of the pathogenesis which may lead to the identification of new therapeutic strategies. The non-type bladder subtype is phenotypically mesenchymal and has mesenchymal features with a high metastatic ability. Post-translational addition of oligosaccharide residues is an important modification that influences cellular functions and contributes to disease pathology. Here, we report the comparative analysis of N-linked glycosylation across bladder cancer subtypes. To analyze the glycosite-containing peptides, we carried out LC-MS/MS-based quantitative proteomic and glycoproteomic profiling. We identified 1299 unique N-linked glycopeptides corresponding to 460 proteins. Additionally, we identified 118 unique N-linked glycopeptides corresponding to 84 proteins to be differentially glycosylated only in non-type subtypes as compared to luminal/basal subtypes. Most of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 55 differentially expressed glycoproteins showed no significant change at the protein abundance level, representing that the glycosylation site occupancy was changed between the non-type subtype and luminal/basal subtypes. Importantly, the extracellular matrix organization pathway was dysregulated in the non-type subtype of bladder carcinoma. N-glycosylation modifications in the extracellular matrix organization proteins may be a contributing factor for the mesenchymal aggressive phenotype in non-type subtype. These aberrant protein glycosylation would provide additional avenues to employ glycan-based therapies and may lead to the identification of novel therapeutic targets.

12.
Front Oncol ; 9: 435, 2019.
Article in English | MEDLINE | ID: mdl-31192134

ABSTRACT

Background: Urothelial carcinoma is the most common malignancy of the bladder and is primarily considered as a disease of the elderly. Studies that address bladder tumor occurrence in young age groups are rare. Case Presentation: A 19-year-old male presented with a gross total painless hematuria. A histology after biopsy revealed a high-grade transitional cell carcinoma with lymph node metastasis. The patient succumbed to the disease on day 72 of the treatment. Here, we used whole-exome sequencing of a paired tumor-normal sample to identify the somatic mutations and the possible targets of treatment. Result: We predicted eight potential driver mutations (TP53 p.V157L, RB1 c.1498+1G>T, MED23 p.L1127P, CTNND1 p.S713C, NSD1 p.P2212A, MED17 p.G556V, DPYD p.Q814K, and SPEN p.S1078*). In addition, we predicted deleterious mutations in genes involved in the ion channels (CACNA1S p.E1581K, CACNG1 p.P71T, CACNG8 p.G404W, GRIN2B p.A1096T, KCNC1 p.G16V, KCNH4 p.E874K, KCNK9 p.R131S, P2RX7 p.A296D, and SCN8A p.R558H). Conclusions: Most likely, mutations in genes involved in ion channels may be responsible for the aggressive behavior of a tumor. Ion channels are the second largest class of drug targets, and may thus serve as a putative potential therapeutic target in advanced stage urothelial carcinoma.

13.
J Clin Med ; 8(5)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108958

ABSTRACT

Bladder carcinoma is highly heterogeneous and its complex molecular landscape; thus, poses a significant challenge for resolving an effective treatment in metastatic tumors. We computed the epithelial-mesenchymal transition (EMT) scores of three bladder carcinoma subtypes-luminal, basal, and non-type. The EMT score of the non-type indicated a "mesenchymal-like" phenotype, which correlates with a relatively more aggressive form of carcinoma, typified by an increased migration and invasion. To identify the altered signaling pathways potentially regulating this EMT phenotype in bladder cancer cell lines, we utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based phosphoproteomic approach. Bioinformatics analyses were carried out to determine the activated pathways, networks, and functions in bladder carcinoma cell lines. A total of 3125 proteins were identified, with 289 signature proteins noted to be differentially phosphorylated (p ≤ 0.05) in the non-type cell lines. The integrin pathway was significantly enriched and five major proteins (TLN1, CTTN, CRKL, ZYX and BCAR3) regulating cell motility and invasion were hyperphosphorylated. Our study reveals GSK3A/B and CDK1 as promising druggable targets for the non-type molecular subtype, which could improve the treatment outcomes for aggressive bladder carcinoma.

14.
Sci Rep ; 9(1): 7933, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138856

ABSTRACT

Circulating tumor cells (CTCs) are putative markers of tumor prognosis and may serve to evaluate patient's response to chemotherapy. CTCs are often detected as single cells but infrequently as clusters and are indicative of worse prognosis. In this study, we developed a short-term culture of nucleated blood cells which was applied to blood samples from breast, lung, esophageal and bladder cancer patients. Clusters of different degrees of compactness, classified as very tight, tight and loose were observed across various cancer types. These clusters show variable expression of cytokeratins. Cluster formation from blood samples obtained during the course of chemotherapy was found to be associated with disease progression and shorter overall survival. The short-term cultures offer a robust and highly reliable method for early prediction of treatment response in different cancer types.


Subject(s)
Breast Neoplasms/diagnosis , Esophageal Neoplasms/diagnosis , Lung Neoplasms/diagnosis , Neoplastic Cells, Circulating/pathology , Urinary Bladder Neoplasms/diagnosis , Antineoplastic Agents/therapeutic use , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Disease Progression , Esophageal Neoplasms/blood , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Female , Humans , Kaplan-Meier Estimate , Keratins/analysis , Lung Neoplasms/blood , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/drug effects , Prognosis , Tumor Cells, Cultured , Urinary Bladder Neoplasms/blood , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology
15.
Langmuir ; 33(34): 8383-8394, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28791869

ABSTRACT

In this communication, we report the design and synthesis as well as the supramolecular assembly behavior of a 2,4,5-triaryl imidazole derivative (compound 1) at the air-water interface and in thin films using Langmuir-Blodgett (LB) technique. The main idea for such a chemical structure is that the long alkyl chain and N-H of the imidazole core may help to form supramolecular architecture through the hydrophobic-hydrophobic interaction and hydrogen bonding, respectively. Accordingly, the interfacial behavior as well as morphology of 1 in thin films were studied through a series of characterization methods such as surface pressure-area (π-A) isotherm, hysteresis analysis, ultraviolet-visible (UV-vis) absorption and steady-state fluorescence spectroscopies, Fourier transform infrared, X-ray diffraction, Brewster angle microscopy (BAM), and atomic force microscopy (AFM) measurements, and so forth. Pressure-area isotherm is an indication toward the formation of supramolecular nanostructures instead of an ideal monolayer at the air-water interface. This has been confirmed by the hysteresis analysis and BAM measurement at the air-water interface. AFM images of 1 in the LB monolayer exhibits the formation of supramolecular nanowires as well as nanorods. By controlling different film-forming parameters, it becomes possible to manipulate these nanostructures. With the passage of time, the nanowires come close to each other and become straight. Similarly, nanorods come close to each other and form bundles of several rods in the LB films. H-bonding, J-aggregation, as well as compression during film formation might play a key role in the formation of such nanostructures. Electrical switching behavior of compound 1 was also observed because of the presence of an electron donor-acceptor system in 1. This type of organic switching behavior may be promising for next-generation organic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL