Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 21, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189875

ABSTRACT

Bioturbation plays an important role in structuring microbial communities in coastal sediments. This study investigates the bacterial community composition in sediment associated with the ghost shrimp Lepidophthalmus louisianensis at two locations in the Northern Gulf of Mexico (Bay St. Louis, MS, and Choctawhatchee Bay, FL). Bacteria were analysed for shrimp burrows and for three different depths of bioturbated intertidal sediment, using second-generation sequencing of the 16S rRNA gene. Burrow walls held a unique bacterial community, which was significantly different from those in the surrounding sediment communities. Communities in burrow walls and surrounding sediment communities also differed between the two geographic locations. The burrow wall communities from both locations were more similar to each other than to sediment communities from same location. Alpha- and Gammaproteobacteria were more abundant in burrows and surface sediment than in the subsurface, whereas Deltaproteobacteria were more abundant in burrows and subsurface sediment, suggesting sediment mixing by the bioturbator. However, abundance of individual ASVs was geographic location-specific for all samples. Therefore, it is suggested that the geographic location plays an important role in regional microbial communities distinctiveness. Bioturbation appears to be an important environmental driver in structuring the community around burrows. Sampling was conducted during times of the year and water salinity, tidal regime and temperature were variable, nevertheless the structure microbial communities appeared to remain realatively stable suggesting that these environmental variable played only a minor role.


Subject(s)
Gammaproteobacteria , Microbiota , Gulf of Mexico , RNA, Ribosomal, 16S/genetics , Bacteria/genetics
2.
Sci Transl Med ; 14(658): eabq4130, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35976993

ABSTRACT

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-ß (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccines, Subunit
3.
Chemosphere ; 167: 19-27, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27705809

ABSTRACT

The present study investigated the effect of lead (Pb) on bioturbation by the oligochaete worm Lumbriculus variegatus, using freshwater microcosms. The experiment used lead at "0", 140, 700, and 3500 µg/g in sediment, and used two different laboratory populations of L. variegatus. A molecular genetic analysis and bioassays were conducted to determine if the two populations differed genetically and whether they differed in Pb-sensitivity. The bioturbation of L. variegatus was estimated using luminophores placed at the sediment-water interface at the beginning of the experiment. After the 14 d experiment the luminophore profiles in sediment were used to estimate the biodiffusion and bioadvection coefficients, using the diffusion-advection model. The results showed that the biodiffusion and bioadvection coefficients were generally negatively related to the Pb concentrations in the sediment. Lead at 700 and 3500 µg/g reduced both coefficients, while Pb at 140 µg/g did not. Luminophore profiles in the "0" and 140 µg/g treatments were indicative of a non-local transport, while a diffusive transport was observed at the higher Pb levels. The two laboratory populations of L. variegatus used in the experiment differed in their sensitivity to Pb when mortality was used as the endpoint, but they did not differ in sediment bioturbation or the Pb-sensitivity of this process. Moreover, the genetic analysis did not detect any genetic differences between the populations. This study demonstrated that elevated levels of Pb can impact ecosystem functioning by decreasing the bioturbation activity of benthic organisms such as L. variegatus.


Subject(s)
Lead/toxicity , Oligochaeta/drug effects , Water Pollutants, Chemical/toxicity , Animals , Fresh Water , Geologic Sediments , Models, Theoretical , Oligochaeta/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...