Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fetal Diagn Ther ; 45(6): 403-412, 2019.
Article in English | MEDLINE | ID: mdl-30121677

ABSTRACT

BACKGROUND: Analysis of cell-free fetal DNA in maternal plasma is very promising for early diagnosis of monogenic diseases. However, it has been limited by the need to set up patient- or disease-specific custom-made approaches. Here we propose a universal test based on fluorescent multiplex PCR and size fragment analysis for an indirect diagnosis of cystic fibrosis (CF). METHODS: The test, based on haplotyping, includes nine intra- and extragenic short tandem repeats of the CFTR locus, the coamplification of p.Phe508del (the most frequent mutation in CF patients worldwide), and a specific SRY sequence. The assay is able to determine the inherited paternal allele. RESULTS: Our simple approach was successfully applied to 30 couples and provided clear results from the maternal plasma. The mean rate of informative markers was sufficient to propose it for use in indirect diagnosis. CONCLUSIONS: This noninvasive prenatal diagnosis test, focused on indirect diagnosis of CF, offers many advantages over current methods: it is simple, rapid, and cost-effective. It allows for the testing of a large number of couples with high risk of CF, whatever the familial mutation of the CFTR gene. It provides an alternative method to reduce the number of invasive tests.


Subject(s)
Cell-Free Nucleic Acids/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Prenatal Diagnosis/methods , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Haplotypes , Humans , Multiplex Polymerase Chain Reaction/methods
2.
Clin Chem Lab Med ; 53(2): 205-15, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25274949

ABSTRACT

BACKGROUND: Analysis of circulating cell-free fetal DNA (cffDNA) in maternal plasma is very promising for early diagnosis of monogenic diseases. However, this approach is not yet available for routine use and remains technically challenging because of the low concentration of cffDNA, which is swamped by the overwhelming maternal DNA. METHODS: To make clinical applications more readily accessible, we propose a new approach based on mutant enrichment with 3'-modified oligonucleotides (MEMO) PCR along with real-time PCR to selectively amplify from the maternal blood the paternally inherited fetal allele that is not present in the maternal genome. RESULTS: The first proof of concept of this strategy was displayed for cystic fibrosis by the accuracy of our detection of the p.Gly542* mutation used as the initial developmental model. Subsequently, a retrospective study of plasmas originating from two pregnant women carrying a fetus with private mutation confirmed the effectiveness of our method. We confirmed the presence of cffDNA in the studied samples by the identification of a tri-allelic DNA profile using a miniSTR kit. CONCLUSIONS: This new non-invasive prenatal diagnosis test offers numerous advantages over current methods: it is simple, cost effective, time efficient and does not require complex equipment or bioinformatics settings. Moreover, our assays for different private mutations demonstrate the viability of this approach in clinical settings for monogenic disorders.


Subject(s)
Cystic Fibrosis/genetics , Polymerase Chain Reaction , Cystic Fibrosis/diagnosis , Female , Humans , Mutation , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...