Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Future Microbiol ; 12: 781-799, 2017 07.
Article in English | MEDLINE | ID: mdl-28608712

ABSTRACT

AIM: The aim of this work was to identify, characterize and evaluate the pathogenic role of mucinolytic activity released by Naegleria fowleri. MATERIALS & METHODS: Zymograms, protease inhibitors, anion exchange chromatography, MALDI-TOF-MS, enzymatic assays, Western blot, and confocal microscopy were used to identify and characterize a secreted mucinase; inhibition assays using antibodies, dot-blots and mouse survival tests were used to evaluate the mucinase as a virulence factor. RESULTS: A 94-kDa protein with mucinolytic activity was inducible and abolished by p-hydroxymercuribenzoate. MALDI-TOF-MS identified a glycoside hydrolase. Specific antibodies against N. fowleri-glycoside hydrolase inhibit cellular damage and MUC5AC degradation, and delay mouse mortality. CONCLUSION: Our findings suggest that secretory products from N. fowleri play an important role in mucus degradation during the invasion process.


Subject(s)
Glycoside Hydrolases/metabolism , Mucins/metabolism , Naegleria fowleri/enzymology , Virulence Factors/metabolism , Animals , Blotting, Western , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/drug effects , Humans , Hydroxymercuribenzoates/pharmacology , Mice , Microscopy, Confocal , Naegleria fowleri/drug effects , Naegleria fowleri/metabolism , Naegleria fowleri/pathogenicity , Polysaccharide-Lyases/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
J Med Microbiol ; 65(9): 885-896, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27381464

ABSTRACT

It has been 50 years since the first case of primary amoebic meningoencephalitis (PAM), an acute and rapidly fatal disease of the central nervous system (CNS), was reported in Australia. It is now known that the aetiological agent of PAM is Naegleria fowleri, an amoeba that is commonly known as 'the brain-eating amoeba'. N. fowleri infects humans of different ages who are in contact with water contaminated with this micro-organism. N. fowleri is distributed worldwide and is found growing in bodies of freshwater in tropical and subtropical environments. The number of PAM cases has recently increased, and the rate of recovery from PAM has been estimated at only 5 %. Amphotericin B has been used to treat patients with PAM. However, it is important to note that there is no specific treatment for PAM. Moreover, this amoeba is considered a neglected micro-organism. Researchers have exerted great effort to design effective drugs to treat PAM and to understand the pathogenesis of PAM over the past 50 years, such as its pathology, molecular and cellular biology, diagnosis and prevention, and its biological implications, including its pathogenic genotypes, its distribution and its ecology. Given the rapid progression of PAM and its high mortality rate, it is important that investigations continue and that researchers collaborate to gain better understanding of the pathogenesis of this disease and, consequently, to improve the diagnosis and treatment of this devastating infection of the CNS.

SELECTION OF CITATIONS
SEARCH DETAIL