Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2815: 79-91, 2024.
Article in English | MEDLINE | ID: mdl-38884912

ABSTRACT

Multidrug resistance, due to acquired antimicrobial resistance genes, is increasingly reported in the zoonotic pathogen Streptococcus suis. Most of these resistance genes are carried by chromosomal Mobile Genetic Elements (MGEs), in particular, Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs). ICEs and IMEs frequently form tandems or nested composite elements, which make their identification difficult. To evaluate their mobility, it is necessary to (i) select the suitable donor-recipient pairs for mating assays, (ii) do PCR excision tests to confirm that the genetic element is able to excise from the chromosome as a circular intermediate, and (iii) evaluate the transfer of the genetic element by conjugation by doing mating assays. In addition to a dissemination of resistance genes between S. suis strains, MGEs can lead to a spreading of resistance genes in the environment and toward pathogenic bacteria. This propagation had to be considered in a One Health perspective.


Subject(s)
Conjugation, Genetic , Interspersed Repetitive Sequences , Interspersed Repetitive Sequences/genetics , Gene Transfer, Horizontal , Streptococcus suis/genetics , Streptococcus suis/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Polymerase Chain Reaction/methods , Genes, Bacterial
2.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38536216

ABSTRACT

Streptococcus suis is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in S. suis worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (n=217) was found in the genomes. Apart from the frequently reported erm(B) and tet(O) genes, more recently described AMR genes were identified [vga(F)/sprA, vat(D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene-MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.


Subject(s)
Streptococcus suis , Humans , Animals , Swine , Virulence , France , Virulence Factors , DNA
3.
J Clin Microbiol ; 61(9): e0016423, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37655935

ABSTRACT

Streptococcus suis, an emerging zoonotic pathogen, causes invasive infections and substantial economic losses in the pig industry worldwide. Antimicrobial resistance against 22 antibiotics was studied for 200 S. suis strains collected in different geographical regions of France. Most of the strains (86%) showed resistance to at least one antibiotic with a low rate of resistance to fluoroquinolones, penicillins, pleuromutilin, and diaminopyrimidine-sulfonamides, and a higher rate to macrolides-lincosamides and tetracycline. Multi-resistance patterns were observed in 138 strains; three of them being resistant to six antibiotic families. Statistical analyses highlighted a decrease in the resistance to trimethoprim-sulfamethoxazole, in our collection, between the two periods studied-before 2010 and after 2015-as well as an impact of the geographical origin with a higher rate of resistance to macrolides-lincosamides and penicillin in Brittany than in the other French regions. Furthermore, macrolides-lincosamides and tetracycline resistance patterns were more likely to be found in pig isolates than in human and wild boar isolates. A difference in resistance was also observed between serotypes. Most of the penicillin-resistant strains belong to serotypes 1, 5, 9, 11, 12, 15, 27, and 29. Finally, penicillin and pleuromutilin resistances were mostly found in "non-clinical" isolates. The empirical treatment of human and porcine infections due to S. suis in France can therefore still be carried out with beta-lactams. However, this study emphasizes the need to monitor antimicrobial resistance in this zoonotic pathogen.


Subject(s)
Anti-Bacterial Agents , Streptococcus suis , Humans , Animals , Swine , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Penicillins , France/epidemiology , Lincosamides , Macrolides/pharmacology , Sus scrofa , Pleuromutilins
4.
Microorganisms ; 9(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34442843

ABSTRACT

Streptococcus suis is a zoonotic pathogen causing important economic losses in swine production. The most commonly used antibiotics in swine industry are tetracyclines, beta-lactams, and macrolides. Resistance to these antibiotics has already been observed worldwide (reaching high rates for macrolides and tetracyclines) as well as resistance to aminoglycosides, fluoroquinolones, amphenicols, and glycopeptides. Most of the resistance mechanisms are encoded by antibiotic resistance genes, and a large part are carried by mobile genetic elements (MGEs) that can be transferred through horizontal gene transfer. This review provides an update of the resistance genes, their combination in multidrug isolates, and their localization on MGEs in S. suis. It also includes an overview of the contribution of biofilm to antimicrobial resistance in this bacterial species. The identification of resistance genes and study of their localization in S. suis as well as the environmental factors that can modulate their dissemination appear essential in order to decipher the role of this bacterium as a reservoir of antibiotic genes for other species.

SELECTION OF CITATIONS
SEARCH DETAIL
...