Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 59(1): 311-322, 2024 01.
Article in English | MEDLINE | ID: mdl-37335079

ABSTRACT

BACKGROUND: The choice between different diffusion-weighted imaging (DWI) techniques is difficult as each comes with tradeoffs for efficient clinical routine imaging and apparent diffusion coefficient (ADC) accuracy. PURPOSE: To quantify signal-to-noise-ratio (SNR) efficiency, ADC accuracy, artifacts, and distortions for different DWI acquisition techniques, coils, and scanners. STUDY TYPE: Phantom, in vivo intraindividual biomarker accuracy between DWI techniques and independent ratings. POPULATION/PHANTOMS: NIST diffusion phantom. 51 Patients: 40 with prostate cancer and 11 with head-and-neck cancer at 1.5 T FIELD STRENGTH/SEQUENCE: Echo planar imaging (EPI): 1.5 T and 3 T Siemens; 3 T Philips. Distortion-reducing: RESOLVE (1.5 and 3 T Siemens); Turbo Spin Echo (TSE)-SPLICE (3 T Philips). Small field-of-view (FOV): ZoomitPro (1.5 T Siemens); IRIS (3 T Philips). Head-and-neck and flexible coils. ASSESSMENT: SNR Efficiency, geometrical distortions, and susceptibility artifacts were quantified for different b-values in a phantom. ADC accuracy/agreement was quantified in phantom and for 51 patients. In vivo image quality was independently rated by four experts. STATISTICAL TESTS: QIBA methodology for accuracy: trueness, repeatability, reproducibility, Bland-Altman 95% Limits-of-Agreement (LOA) for ADC. Wilcoxon Signed-Rank and student tests on P < 0.05 level. RESULTS: The ZoomitPro small FOV sequence improved b-image efficiency by 8%-14%, reduced artifacts and observer scoring for most raters at the cost of smaller FOV compared to EPI. The TSE-SPLICE technique reduced artifacts almost completely at a 24% efficiency cost compared to EPI for b-values ≤500 sec/mm2 . Phantom ADC 95% LOA trueness were within ±0.03 × 10-3 mm2 /sec except for small FOV IRIS. The in vivo ADC agreement between techniques, however, resulted in 95% LOAs in the order of ±0.3 × 10-3 mm2 /sec with up to 0.2 × 10-3 mm2 /sec of bias. DATA CONCLUSION: ZoomitPro for Siemens and TSE SPLICE for Philips resulted in a trade-off between efficiency and artifacts. Phantom ADC quality control largely underestimated in vivo accuracy: significant ADC bias and variability was found between techniques in vivo. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Head , Neck , Male , Humans , Reproducibility of Results , Phantoms, Imaging , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods
2.
Phys Imaging Radiat Oncol ; 27: 100463, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37497189

ABSTRACT

Background and purpose: Conventional workflows for dose calculations require conversions between Hounsfield Units (HU) and the mass or electron density for Computed Tomography (CT) images in the Treatment Planning System (TPS). These conversions are scanner- and mostly kVp-dependent. A density representation or reconstruction at the CT level can potentially simplify the workflow. This study aimed to investigate the agreement between these two methods for patients and different calculation algorithms. Materials and methods: Density conversions for conventional HU-density conversions were first established using two phantoms with appropriate inserts. Next, the differences in density and dose calculations between both methods were assessed using 95% Limits of Agreement (LOA) Bland-Altman analysis for 44 consecutive clinical patient cases. These cases represented a mix of indications, algorithms (collapsed cone, convolution superposition, ray tracing, finite-size pencil beam, and Monte Carlo), and scan kVp (80 to 140) in two different commercial TPS. Results: No statistically significant bias in density or dose calculations was found between the two methods. Furthermore, 95% LOAs between both methods were ±0.05 g/cm3 and ±0.1 Gy for density and dose, respectively. Small but clinically irrelevant dose differences were found in high-density gradient regions for convolution superposition calculations or CT scans with non-delayed contrast agent injections with targets nearby vessels. Conclusions: The in vivo density-reconstructed images at the CT level were assessed to be equivalent. Therefore, they can simplify and improve clinical workflows, allowing patient-specific acquisitions for contouring and density-reconstructed images for dose calculations.

3.
Circ Arrhythm Electrophysiol ; 15(9): e010955, 2022 09.
Article in English | MEDLINE | ID: mdl-36074658

ABSTRACT

BACKGROUND: Stereotactic body radiotherapy (SBRT) has been reported as a safe and efficient therapy for treating refractory ventricular tachycardia (VT) despite optimal medical treatment and catheter ablation. However, data on the use of SBRT in patients with electrical storm (ES) is lacking. The aim of this study was to assess the clinical outcomes associated with SBRT in the context of ES. METHODS: This retrospective study included patients who underwent SBRT in the context of ES from March 2020 to March 2021 in one tertiary center (CHU Lille). The target volume was delineated according to a predefined workflow. The efficacy was assessed with the following end points: sustained VT recurrence, VT reduced with antitachycardia pacing, and implantable cardioverter defibrillator shock. RESULTS: Seventeen patients underwent SBRT to treat refractory VT in the context of ES (mean 67±12.8 age, 59% presenting ischemic heart disease, mean left ventricular ejection fraction: 33.7± 9.7%). Five patients presented with ES related to incessant VT. Among these 5 patients, the time to effectiveness ranged from 1 to 7 weeks after SBRT. In the 12 remaining patients, VT recurrences occurred in 7 patients during the first 6 weeks following SBRT. After a median 12.5 (10.5-17.8) months follow-up, a significant reduction of the VT burden was observed beyond 6 weeks (-91% [95% CI, 78-103]), P<0.0001). The incidence of implantable cardioverter defibrillator shock and antitachycardia pacing was 36% at 1 year. CONCLUSIONS: SBRT is associated with a significant reduction of the VT burden in the event of an ES; however, prospective randomized control trials are needed. In patients without incessant VT, recurrences are observed in half of patients during the first 6 weeks. VT tolerance and implantable cardioverter defibrillator programming adjustments should be integrated as part of an action plan defined before SBRT for each patient.


Subject(s)
Catheter Ablation , Defibrillators, Implantable , Tachycardia, Ventricular , Catheter Ablation/adverse effects , Defibrillators, Implantable/adverse effects , Humans , Prospective Studies , Recurrence , Retrospective Studies , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/radiotherapy , Tachycardia, Ventricular/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...