Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Biol ; 34(8): e23753, 2022 08.
Article in English | MEDLINE | ID: mdl-35460113

ABSTRACT

OBJECTIVES: Imaging methods to measure the human pelvis in vivo provide opportunities to better understand pelvic variation and adaptation. Magnetic resonance imaging (MRI) provides high-resolution images, but is more expensive than dual-energy X-ray absorptiometry (DXA). We sought to compare pelvic breadth measurements collected from the same individuals using both methods, to investigate if there are systematic differences in pelvic measurement between these imaging methods. METHODS: Three pelvic breadth dimensions (bi-iliac breadth, bi-acetabular breadth, medio-lateral inlet breadth) were collected from MRI and DXA scans of a cross-sectional sample of healthy, nulliparous adult women of South Asian ancestry (n = 63). Measurements of MRI and DXA pelvic dimensions were collected four times in total, with one baseline data collection session and three replications. Data collected from these sessions were averaged, used to calculate technical error of measurement and entered into a Bland-Altman analysis. Linear regression models were fitted with a given MRI pelvic measurement regressed on the same measurement collected from DXA scans, as well as MRI mean bias regressed on DXA mean bias. RESULTS: Technical error of measurement was higher in DXA measurements of bi-iliac breadth and medio-lateral pelvic inlet breadth and higher for MRI measurements of bi-acetabular breadth. Bland Altman analyses showed no statistically significant relationship between the mean bias of MRI and DXA, and the differences between MRI and DXA pelvic measurements. CONCLUSIONS: DXA measurements of pelvic breadth are comparable to MRI measurements of pelvic breadth. DXA is a less costly imaging technique than MRI and can be used to collect measurements of skeletal elements in living people.


Subject(s)
Magnetic Resonance Imaging , Pelvis , Absorptiometry, Photon/methods , Adult , Body Mass Index , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging/methods , Pelvis/diagnostic imaging
2.
Evol Med Public Health ; 10(1): 108-122, 2022.
Article in English | MEDLINE | ID: mdl-35273803

ABSTRACT

Studies of living children demonstrate that early life stress impacts linear growth outcomes. Stresses affecting linear growth may also impact later life health outcomes, including increased cardiometabolic disease risk. Palaeopathologists also assess the growth of children recovered from bioarchaeological contexts. Early life stresses are inferred to affect linear growth outcomes, and measurements of skeletal linear dimensions alongside other bioarchaeological information may indicate the types of challenges faced by past groups. In clinical settings, the impacts of stress on growing children are typically measured by examining height. Palaeopathologists are limited to examining bone dimensions directly and must grapple with incomplete pictures of childhood experiences that may affect growth. Palaeopathologists may use clinical growth studies to inform observations among past children; however, there may be issues with this approach. Here, we review the relationship between contemporary and palaeopathological studies of child and adolescent growth. We identify approaches to help bridge the gap between palaeopathological and biomedical growth studies. We advocate for: the creation of bone-specific growth reference information using medical imaging and greater examination of limb proportions; the inclusion of children from different global regions and life circumstances in contemporary bone growth studies; and greater collaboration and dialogue between palaeopathologists and clinicians as new studies are designed to assess linear growth past and present. We advocate for building stronger bridges between these fields to improve interpretations of growth patterns across human history and to potentially improve interventions for children living and growing today.

3.
Am J Hum Biol ; 33(1): e23451, 2021 01.
Article in English | MEDLINE | ID: mdl-32567787

ABSTRACT

OBJECTIVES: The "obstetrical dilemma" hypothesis assumes that the modern human female pelvis serves two discrete functions: obstetrics and locomotion. We investigate whether these differing functions create observable patterns of morphological covariation and whether those patterns differ by height, weight, and age. This allows evaluation of evidence for canalization and phenotypic plasticity relevant to obstetric and locomotor function among a living female population. METHODS: Landmarks (N = 86) were collected and inter-landmark distances were calculated (N = 36) on the pelvis and proximal femur of CT scans of living women aged 20 to 90 years (M = 93) receiving a routine CT scan. Partial least squares and relative SD of eigenvalues analyses were used to evaluate integration overall and within locomotor and obstetric modules, respectively. Ordinary Least Squared regression was used to evaluate scaling relationships between inter-landmark distances and height, weight, and age. RESULTS: The obstetric pelvis was significantly less internally integrated than the locomotor pelvis. Many obstetric measurements were constrained in absolute terms relative to height; shorter women had relatively larger birth canal dimensions, and several key obstetric dimensions showed relative freedom from height. Lower weight women had some relatively larger obstetric and locomotor dimensions. Regarding age, younger women showed a few relatively larger outlet dimensions. CONCLUSIONS: This study suggests that the obstetric pelvis and the locomotor pelvis function are morphologically distinct, with the obstetric pelvis showing relatively greater flexibility. These relationships between relative constraints support the hypothesis that the modern female pelvis shows evidence of both canalization and phenotypic plasticity in obstetric and locomotor structures.


Subject(s)
Locomotion , Pelvic Bones/anatomy & histology , Pelvis/anatomy & histology , Adaptation, Physiological , Adult , Aged , Aged, 80 and over , England , Female , Humans , Middle Aged , Obstetrics , Pelvic Bones/physiology , Pelvis/physiology , Young Adult
4.
Am J Phys Anthropol ; 159(4): 630-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26699269

ABSTRACT

OBJECTIVES: Under the obstetrical dilemma (OD) hypothesis, selection acts on the human female pelvis to ensure a sufficiently sized obstetric canal for birthing a large-brained, broad shouldered neonate, while bipedal locomotion selects for a narrower and smaller pelvis. Despite this female-specific stabilizing selection, variability of linear dimensions of the pelvic canal and overall size are not reduced in females, suggesting shape may instead be variable among females of a population. Female canal shape has been shown to vary among populations, while male canal shape does not. Within this context, we examine within-population canal shape variation in comparison with that of noncanal aspects of the pelvis and the limbs. MATERIALS AND METHODS: Nine skeletal samples (total female n = 101, male n = 117) representing diverse body sizes and shapes were included. Principal components analysis was applied to size-adjusted variables of each skeletal region. A multivariate variance was calculated using the weighted PC scores for all components in each model and F-ratios used to assess differences in within-population variances between sexes and skeletal regions. RESULTS: Within both sexes, multivariate canal shape variance is significantly greater than noncanal pelvis and limb variances, while limb variance is greater than noncanal pelvis variance in some populations. Multivariate shape variation is not consistently different between the sexes in any of the skeletal regions. DISCUSSION: Diverse selective pressures, including obstetrics, locomotion, load carrying, and others may act on canal shape, as well as genetic drift and plasticity, thus increasing variation in morphospace while protecting obstetric sufficiency.


Subject(s)
Extremities/anatomy & histology , Pelvic Bones/anatomy & histology , Pelvic Bones/physiology , Pelvis/physiology , Pregnancy/physiology , Anthropology, Physical , Female , Humans , Male , Multivariate Analysis , Racial Groups/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL