Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Assoc Res Otolaryngol ; 24(2): 253-264, 2023 04.
Article in English | MEDLINE | ID: mdl-36754938

ABSTRACT

Two EEG experiments measured the sustained neural response to amplitude-modulated (AM) high-rate pulse trains presented to a single cochlear-implant (CI) electrode. Stimuli consisted of two interleaved pulse trains with AM rates F1 and F2 close to 80 and 120 Hz respectively, and where F2 = 1.5F1. Following Carlyon et al. (J Assoc Res Otolaryngol, 2021), we assume that such stimuli can produce a neural distortion response (NDR) at F0 = F2-F1 Hz if temporal dependencies ("smoothing") in the auditory system are followed by one or more neural nonlinearities. In experiment 1, the rate of each pulse train was 480 pps and the gap between pulses in the F1 and F2 pulse trains ranged from 0 to 984 µs. The NDR had a roughly constant amplitude for gaps between 0 and about 200-400 µs, and decreased for longer gaps. We argue that this result is consistent with a temporal dependency, such as facilitation, operating at the level of the auditory nerve and/or with co-incidence detection by cochlear-nucleus neurons. Experiment 2 first measured the NDR for stimuli at each listener's most comfortable level ("MCL") and for F0 = 37, 40, and 43 Hz. This revealed a group delay of about 42 ms, consistent with a thalamic/cortical source. We then showed that the NDR grew steeply with stimulus amplitude and, for most listeners, decreased by more than 12 dB between MCL and 75% of the listener's dynamic range. We argue that the NDR is a potentially useful objective estimate of MCL.


Subject(s)
Cochlear Implantation , Cochlear Implants , Cochlear Nerve/physiology , Electrodes, Implanted , Electric Stimulation , Electroencephalography
2.
Ear Hear ; 44(3): 627-640, 2023.
Article in English | MEDLINE | ID: mdl-36477611

ABSTRACT

OBJECTIVES: Electrically evoked compound action-potentials (ECAPs) can be recorded using the electrodes in a cochlear implant (CI) and represent the synchronous responses of the electrically stimulated auditory nerve. ECAPs can be obtained using a forward-masking method that measures the neural response to a probe and masker electrode separately and in combination. The panoramic ECAP (PECAP) analyses measured ECAPs obtained using multiple combinations of masker and probe electrodes and uses a nonlinear optimization algorithm to estimate current spread from each electrode and neural health along the cochlea. However, the measurement of ECAPs from multiple combinations of electrodes is too time consuming for use in clinics. Here, we propose and evaluate SpeedCAP, a speedy method for obtaining the PECAP measurements that minimizes recording time by exploiting redundancies between multiple ECAP measures. DESIGN: In the first study, 11 users of Cochlear Ltd. CIs took part. ECAPs were recorded using the forward-masking artifact-cancelation technique at the most comfortable loudness level (MCL) for every combination of masker and probe electrodes for all active electrodes in the users' MAPs, as per the standard PECAP recording paradigm. The same current levels and recording parameters were then used to collect ECAPs in the same users with the SpeedCAP method. The ECAP amplitudes were then compared between the two conditions, as were the corresponding estimates of neural health and current spread calculated using the PECAP method previously described by Garcia et al. The second study measured SpeedCAP intraoperatively in 8 CI patients and with all maskers and probes presented at the same current level to assess feasibility. ECAPs for the subset of conditions where the masker and probe were presented on the same electrode were compared with those obtained using the slower approach leveraged by the standard clinical software. RESULTS: Data collection time was reduced from ≈45 to ≈8 minutes. There were no significant differences between normalized root mean squared error (RMSE) repeatability metrics for post-operative PECAP and SpeedCAP data, nor for the RMSEs calculated between PECAP and SpeedCAP data. The comparison achieved 80% power to detect effect sizes down to 8.2% RMSE. When between-participant differences were removed, both the neural-health (r = 0.73) and current-spread (r = 0.65) estimates were significantly correlated ( p < 0.0001, df = 218) between SpeedCAP and PECAP conditions across all electrodes, and showed RMSE errors of 12.7 ± 4.7% and 16.8 ± 8.8%, respectively (with the ± margins representing 95% confidence intervals). Valid ECAPs were obtained in all patients in the second study, demonstrating intraoperative feasibility of SpeedCAP. No significant differences in RMSEs were detectable between post- and intra-operative ECAP measurements, with the comparison achieving 80% power to detect effect sizes down to 13.3% RMSE. CONCLUSIONS: The improved efficiency of SpeedCAP provides time savings facilitating multi-electrode ECAP recordings in routine clinical practice. SpeedCAP data collection is sufficiently quick to record intraoperatively, and adds no more than 8.2% error to the ECAP amplitudes. Such measurements could thereafter be submitted to models such as PECAP to provide patient-specific patterns of neural activation to inform programming of clinical MAPs and identify causes of poor performance at the electrode-nerve interface of CI users. The speed and accuracy of these measurements also opens up a wide range of additional research questions to be addressed.


Subject(s)
Cochlear Implantation , Cochlear Implants , Humans , Cochlear Implantation/methods , Cochlea/physiology , Evoked Potentials , Evoked Potentials, Auditory/physiology , Action Potentials/physiology , Cochlear Nerve/physiology , Electric Stimulation
3.
J Assoc Res Otolaryngol ; 23(2): 285-299, 2022 04.
Article in English | MEDLINE | ID: mdl-35080684

ABSTRACT

Cochlear implants (CIs) convey the amplitude envelope of speech by modulating high-rate pulse trains. However, not all of the envelope may be necessary to perceive amplitude modulations (AMs); the effective envelope depth may be limited by forward and backward masking from the envelope peaks. Three experiments used modulated pulse trains to measure which portions of the envelope can be effectively processed by CI users as a function of AM frequency. Experiment 1 used a three-interval forced-choice task to test the ability of CI users to discriminate less-modulated pulse trains from a fully modulated standard, without controlling for loudness. The stimuli in experiment 2 were identical, but a two-interval task was used in which participants were required to choose the less-modulated interval, ignoring loudness. Catch trials, in which judgements based on level or modulation depth would give opposing answers, were included. Experiment 3 employed novel stimuli whose modulation envelope could be modified below a variable point in the dynamic range, without changing the loudness of the stimulus. Overall, results showed that substantial portions of the envelope are not accurately encoded by CI users. In experiment 1, where loudness cues were available, participants on average were insensitive to changes in the bottom 30% of their dynamic range. In experiment 2, where loudness was controlled, participants appeared insensitive to changes in the bottom 50% of the dynamic range. In experiment 3, participants were insensitive to changes in the bottom 80% of the dynamic range. We discuss potential reasons for this insensitivity and implications for CI speech-processing strategies.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Acoustic Stimulation , Cochlear Implantation/methods , Cues , Deafness/rehabilitation , Humans
4.
J Assoc Res Otolaryngol ; 22(5): 567-589, 2021 10.
Article in English | MEDLINE | ID: mdl-33891218

ABSTRACT

The knowledge of patient-specific neural excitation patterns from cochlear implants (CIs) can provide important information for optimizing efficacy and improving speech perception outcomes. The Panoramic ECAP ('PECAP') method (Cosentino et al. 2015) uses forward-masked electrically evoked compound action-potentials (ECAPs) to estimate neural activation patterns of CI stimulation. The algorithm requires ECAPs be measured for all combinations of probe and masker electrodes, exploiting the fact that ECAP amplitudes reflect the overlapping excitatory areas of both probes and maskers. Here we present an improved version of the PECAP algorithm that imposes biologically realistic constraints on the solution, that, unlike the previous version, produces detailed estimates of neural activation patterns by modelling current spread and neural health along the intracochlear electrode array and is capable of identifying multiple regions of poor neural health. The algorithm was evaluated for reliability and accuracy in three ways: (1) computer-simulated current-spread and neural-health scenarios, (2) comparisons to psychophysical correlates of neural health and electrode-modiolus distances in human CI users, and (3) detection of simulated neural 'dead' regions (using forward masking) in human CI users. The PECAP algorithm reliably estimated the computer-simulated scenarios. A moderate but significant negative correlation between focused thresholds and the algorithm's neural-health estimates was found, consistent with previous literature. It also correctly identified simulated 'dead' regions in all seven CI users evaluated. The revised PECAP algorithm provides an estimate of neural excitation patterns in CIs that could be used to inform and optimize CI stimulation strategies for individual patients in clinical settings.


Subject(s)
Cochlear Implantation , Cochlear Implants , Action Potentials , Algorithms , Cochlea/physiology , Electric Stimulation , Evoked Potentials, Auditory/physiology , Humans , Reproducibility of Results
5.
J Assoc Res Otolaryngol ; 22(2): 141-159, 2021 04.
Article in English | MEDLINE | ID: mdl-33492562

ABSTRACT

We measured the sustained neural response to electrical stimulation by a cochlear implant (CI). To do so, we interleaved two stimuli with frequencies F1 and F2 Hz and recorded a neural distortion response (NDR) at F2-F1 Hz. We show that, because any one time point contains only the F1 or F2 stimulus, the instantaneous nonlinearities typical of electrical artefact should not produce distortion at this frequency. However, if the stimulus is smoothed, such as by charge integration at the nerve membrane, subsequent (neural) nonlinearities can produce a component at F2-F1 Hz. We stimulated a single CI electrode with interleaved sinusoids or interleaved amplitude-modulated pulse trains such that F2 = 1.5F1, and found no evidence for an NDR when F2-F1 was between 90 and 120 Hz. However, interleaved amplitude-modulated pulse trains with F2-F1~40 Hz revealed a substantial NDR with a group delay of about 45 ms, consistent with a thalamic and/or cortical response. The NDR could be measured even from recording electrodes adjacent to the implant and at the highest pulse rates (> 4000 pps) used clinically. We then measured the selectivity of this sustained response by presenting F1 and F2 to different electrodes and at different between-electrode distances. This revealed a broad tuning that, we argue, reflects the overlap between the excitation elicited by the two electrodes. Our results also provide a glimpse of the neural nonlinearity in the auditory system, unaffected by the biomechanical cochlear nonlinearities that accompany acoustic stimulation. Several potential clinical applications of our findings are discussed.


Subject(s)
Cochlear Implantation , Cochlear Implants , Electric Stimulation , Acoustic Stimulation , Cochlea/physiology , Electric Stimulation/methods , Humans
6.
J Assoc Res Otolaryngol ; 22(1): 67-80, 2021 02.
Article in English | MEDLINE | ID: mdl-33150541

ABSTRACT

Variations in neural health along the cochlea can degrade the spectral and temporal representation of sounds conveyed by cochlear implants (CIs). We evaluated and compared one electrophysiological measure and two behavioural measures that have been proposed as estimates of neural health patterns, in order to explore the extent to which the different measures provide converging and consistent neural health estimates. All measures were obtained from the same 11 users of the Cochlear Corporation CI. The two behavioural measures were multipulse integration (MPI) and the polarity effect (PE), both measured on each of seven electrodes per subject. MPI was measured as the difference between thresholds at 80 pps and 1000 pps, and PE as the difference in thresholds between cathodic- and anodic-centred quadraphasic (QP) 80-pps pulse trains. It has been proposed that good neural health corresponds to a large MPI and to a large negative PE (lower thresholds for cathodic than anodic pulses). The electrophysiological measure was the effect of interphase gap (IPG) on the offset of the ECAP amplitude growth function (AGF), which has been correlated with spiral ganglion neuron density in guinea pigs. This 'IPG offset' was obtained on the same subset of electrodes used for the behavioural measures. Despite high test-retest reliability, there were no significant correlations between the neural health estimates for either within-subject comparisons across the electrode array, or between-subject comparisons of the means. A phenomenological model of a population of spiral ganglion neurons was then used to investigate physiological mechanisms that might underlie the different neural health estimates. The combined experimental and modelling results provide evidence that PE, MPI and IPG offset may reflect different characteristics of the electrode-neural interface.


Subject(s)
Auditory Perception/physiology , Cochlear Implants , Cochlear Nerve/physiology , Animals , Computer Simulation , Guinea Pigs , Reproducibility of Results
7.
J Assoc Res Otolaryngol ; 21(6): 511-526, 2020 12.
Article in English | MEDLINE | ID: mdl-32804337

ABSTRACT

It has been suggested that a specialized high-temporal-acuity brainstem pathway can be activated by stimulating more apically in the cochlea than is achieved by cochlear implants (CIs) when programmed with contemporary clinical settings. We performed multiple experiments to test the effect on pitch perception of phantom stimulation and asymmetric current pulses, both supposedly stimulating beyond the most apical electrode of a CI. The two stimulus types were generated using a bipolar electrode pair, composed of the most apical electrode of the array and a neighboring, more basal electrode. Experiment 1 used a pitch-ranking procedure where neural excitation was shifted apically or basally using so-called phantom stimulation. No benefit of apical phantom stimulation was found on the highest rate up to which pitch ranks increased (upper limit), nor on the slopes of the pitch-ranking function above 300 pulses per second (pps). Experiment 2 used the same procedure to study the effects of apical pseudomonophasic pulses, where the locus of excitation was manipulated by changing stimulus polarity. A benefit of apical stimulation was obtained for the slopes above 300 pps. Experiment 3 used an adaptive rate discrimination procedure and found a small but significant benefit of both types of apical stimulation. Overall, the results show some benefit for apical stimulation on temporal pitch processing at high pulse rates but reveal that the effect is smaller and more variable across listeners than suggested by previous research. The results also provide some indication that the benefit of apical stimulation may decline over time since implantation.


Subject(s)
Cochlear Implants , Pitch Perception , Humans
8.
J Assoc Res Otolaryngol ; 20(4): 431-448, 2019 08.
Article in English | MEDLINE | ID: mdl-31161338

ABSTRACT

Thresholds of asymmetric pulses presented to cochlear implant (CI) listeners depend on polarity in a way that differs across subjects and electrodes. It has been suggested that lower thresholds for cathodic-dominant compared to anodic-dominant pulses reflect good local neural health. We evaluated the hypothesis that this polarity effect (PE) can be used in a site-selection strategy to improve speech perception and spectro-temporal resolution. Detection thresholds were measured in eight users of Advanced Bionics CIs for 80-pps, triphasic, monopolar pulse trains where the central high-amplitude phase was either anodic or cathodic. Two experimental MAPs were then generated for each subject by deactivating the five electrodes with either the highest or the lowest PE magnitudes (cathodic minus anodic threshold). Performance with the two experimental MAPs was evaluated using two spectro-temporal tests (Spectro-Temporal Ripple for Investigating Processor EffectivenesS (STRIPES; Archer-Boyd et al. in J Acoust Soc Am 144:2983-2997, 2018) and Spectral-Temporally Modulated Ripple Test (SMRT; Aronoff and Landsberger in J Acoust Soc Am 134:EL217-EL222, 2013)) and with speech recognition in quiet and in noise. Performance was also measured with an experimental MAP that used all electrodes, similar to the subjects' clinical MAP. The PE varied strongly across subjects and electrodes, with substantial magnitudes relative to the electrical dynamic range. There were no significant differences in performance between the three MAPs at group level, but there were significant effects at subject level-not all of which were in the hypothesized direction-consistent with previous reports of a large variability in CI users' performance and in the potential benefit of site-selection strategies. The STRIPES but not the SMRT test successfully predicted which strategy produced the best speech-in-noise performance on a subject-by-subject basis. The average PE across electrodes correlated significantly with subject age, duration of deafness, and speech perception scores, consistent with a relationship between PE and neural health. These findings motivate further investigations into site-specific measures of neural health and their application to CI processing strategies.


Subject(s)
Cochlear Implants , Speech Perception , Aged , Auditory Threshold , Humans , Middle Aged
9.
J Neurol Surg Rep ; 80(1): e1-e9, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30723658

ABSTRACT

Objectives A decision on whether to insert a cochlear implant can be made in neurofibromatosis 2 (NF2) if there is objective evidence of cochlear nerve (CN) function post vestibular schwannoma (VS) excision. We aimed to develop intraoperative CN monitoring to help in this decision. Design We describe the intraoperative monitoring of a patient with NF2 and our stimulating and recording set up. A novel test electrode is used to stimulate the CN electrically. Setting This study was set at a tertiary referral center for skull base pathology. Main outcome measure Preserved auditory brainstem responses leading to cochlear implantation. Results Electrical auditory brainstem response (EABR) waveforms will be displayed from different stages of the operation. A cochlear implant was inserted at the same sitting based on the EABR. Conclusion Electrically evoked CN monitoring can provide objective evidence of CN function after VS excision and aid in the decision-making process of hearing rehabilitation in patients who will be rendered deaf.

10.
J Assoc Res Otolaryngol ; 20(2): 169-185, 2019 04.
Article in English | MEDLINE | ID: mdl-30543016

ABSTRACT

A series of experiments investigated potential changes in temporal processing during the months following activation of a cochlear implant (CI) and as a function of stimulus level. Experiment 1 tested patients on the day of implant activation and 2 and 6 months later. All stimuli were presented using direct stimulation of a single apical electrode. The dependent variables were rate discrimination ratios (RDRs) for pulse trains with rates centred on 120 pulses per second (pps), obtained using an adaptive procedure, and a measure of the upper limit of temporal pitch, obtained using a pitch-ranking procedure. All stimuli were presented at their most comfortable level (MCL). RDRs decreased from 1.23 to 1.16 and the upper limit increased from 357 to 485 pps from 0 to 2 months post-activation, with no overall change from 2 to 6 months. Because MCLs and hence the testing level increased across sessions, two further experiments investigated whether the performance changes observed across sessions could be due to level differences. Experiment 2 re-tested a subset of subjects at 9 months post-activation, using current levels similar to those used at 0 months. Although the stimuli sounded softer, some subjects showed lower RDRs and/or higher upper limits at this re-test. Experiment 3 measured RDRs and the upper limit for a separate group of subjects at levels equal to 60 %, 80 % and 100 % of the dynamic range. RDRs decreased with increasing level. The upper limit increased with increasing level for most subjects, with two notable exceptions. Implications of the results for temporal plasticity are discussed, along with possible influences of the effects of level and of across-session learning.


Subject(s)
Auditory Perception , Cochlear Implants , Aged , Humans , Middle Aged , Time Factors
11.
J Acoust Soc Am ; 144(5): 2751, 2018 11.
Article in English | MEDLINE | ID: mdl-30522299

ABSTRACT

The symmetric biphasic pulses used in contemporary cochlear implants (CIs) consist of both cathodic and anodic currents, which may stimulate different sites on spiral ganglion neurons and, potentially, interact with each other. The effect on the order of anodic and cathodic stimulation on loudness at short inter-pulse intervals (IPIs; 0-800 µs) is investigated. Pairs of opposite-polarity pseudomonophasic (PS) pulses were used and the amplitude of each pulse was manipulated independently. In experiment 1 the two PS pulses differed in their current level in order to elicit the same loudness when presented separately. Six users of the Advanced Bionics CI (Valencia, CA) loudness-ranked trains of the pulse pairs using a midpoint-comparison procedure. Stimuli with anodic-leading polarity were louder than those with cathodic-leading polarity for IPIs shorter than 400 µs. This effect was small-about 0.3 dB-but consistent across listeners. When the same procedure was repeated with both PS pulses having the same current level (experiment 2), anodic-leading stimuli were still louder than cathodic-leading stimuli at very short intervals. However, when using symmetric biphasic pulses (experiment 3) the effect disappeared at short intervals and reversed at long intervals. Possible peripheral sources of such polarity interactions are discussed.


Subject(s)
Auditory Perception/physiology , Cochlear Implants/adverse effects , Loudness Perception/physiology , Spiral Ganglion/physiopathology , Acoustic Stimulation , Aged , Cochlear Implantation/methods , Cochlear Implants/statistics & numerical data , Electric Stimulation/adverse effects , Electrodes, Implanted/standards , Humans , Middle Aged , Pitch Discrimination/physiology , Prosthesis Design , Spiral Ganglion/surgery
12.
J Acoust Soc Am ; 144(5): 2983, 2018 11.
Article in English | MEDLINE | ID: mdl-30522311

ABSTRACT

Psychophysical tests of spectro-temporal resolution may aid the evaluation of methods for improving hearing by cochlear implant (CI) listeners. Here the STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is described and validated. Like speech, the test requires both spectral and temporal processing to perform well. Listeners discriminate between complexes of sine sweeps which increase or decrease in frequency; difficulty is controlled by changing the stimulus spectro-temporal density. Care was taken to minimize extraneous cues, forcing listeners to perform the task only on the direction of the sweeps. Vocoder simulations with normal hearing listeners showed that the STRIPES test was sensitive to the number of channels and temporal information fidelity. An evaluation with CI listeners compared a standard processing strategy with one having very wide filters, thereby spectrally blurring the stimulus. Psychometric functions were monotonic for both strategies and five of six participants performed better with the standard strategy. An adaptive procedure revealed significant differences, all in favour of the standard strategy, at the individual listener level for six of eight CI listeners. Subsequent measures validated a faster version of the test, and showed that STRIPES could be performed by recently implanted listeners having no experience of psychophysical testing.


Subject(s)
Cochlear Implantation/instrumentation , Cochlear Implants/adverse effects , Speech Perception/physiology , Acoustic Stimulation/methods , Adult , Aged , Aged, 80 and over , Auditory Perception/physiology , Bionics , Cochlear Implantation/rehabilitation , Cues , Female , Hearing Tests/methods , Humans , Male , Middle Aged , Noise/adverse effects , Noise/prevention & control , Pitch Discrimination , Psychoacoustics , Psychometrics/methods , Time Factors
13.
J Assoc Res Otolaryngol ; 19(6): 669-680, 2018 12.
Article in English | MEDLINE | ID: mdl-30232712

ABSTRACT

Temporal processing by cochlear implant listeners is degraded and is affected by auditory deprivation. The fast-acting Kv3.1 potassium channel is important for sustained temporally accurate firing and is also susceptible to deprivation, the effects of which can be partially restored in animals by the molecule AUT00063. We report the results of a randomised placebo-controlled double-blind study on psychophysical tests of the effects of AUT00063 on temporal processing by CI listeners. The study measured the upper limit of temporal pitch, gap detection, and discrimination of low rates (centred on 120 pps) for monopolar pulse trains presented to an apical electrode. The upper limit was measured using the optimally efficient midpoint comparison (MPC) pitch-ranking procedure; thresholds were obtained for the other two measures using an adaptive procedure. Twelve CI users (MedEl and Cochlear) were tested before and after two periods of AUT00063 or placebo in a within-subject crossover study. No significant differences occurred between post-drug and post-placebo conditions. This absence of effect occurred despite high test-retest reliability for all three measures, obtained by comparing performance on the two baseline visits, and despite the demonstrated sensitivity of the measures to modest changes in temporal processing obtained in other studies from our laboratory. Hence, we have no evidence that AUT00063 improves temporal processing for the doses and patient population employed.


Subject(s)
Auditory Perception/drug effects , Cochlear Implants , Deafness/therapy , Imidazoles/therapeutic use , Pyrimidines/therapeutic use , Aged , Aged, 80 and over , Cross-Over Studies , Double-Blind Method , Hearing Tests , Humans , Imidazoles/pharmacology , Middle Aged , Pyrimidines/pharmacology , Shaw Potassium Channels
14.
J Assoc Res Otolaryngol ; 19(5): 569, 2018 10.
Article in English | MEDLINE | ID: mdl-30182318

ABSTRACT

The middle initial of Julie G. Arenberg's name was incorrect in the original publication; it is correct as displayed here.

15.
J Assoc Res Otolaryngol ; 19(5): 559-567, 2018 10.
Article in English | MEDLINE | ID: mdl-29881937

ABSTRACT

Previous psychophysical and modeling studies suggest that cathodic stimulation by a cochlear implant (CI) may preferentially activate the peripheral processes of the auditory nerve, whereas anodic stimulation may preferentially activate the central axons. Because neural degeneration typically starts with loss of the peripheral processes, lower thresholds for cathodic than for anodic stimulation may indicate good local neural survival. We measured thresholds for 99-pulse-per-second trains of triphasic (TP) pulses where the central high-amplitude phase was either anodic (TP-A) or cathodic (TP-C). Thresholds were obtained in monopolar mode from four or five electrodes and a total of eight ears from subjects implanted with the Advanced Bionics CI. When between-subject differences were removed, there was a modest but significant correlation between the polarity effect (TP-C threshold minus TP-A threshold) and the average of TP-C and TP-A thresholds, consistent with the hypothesis that a large polarity effect corresponds to good neural survival. When data were averaged across electrodes for each subject, relatively low thresholds for TP-C correlated with a high "upper limit" (the pulse rate up to which pitch continues to increase) from a previous study (Cosentino et al. J Assoc Otolaryngol 17:371-382). Overall, the results provide modest indirect support for the hypothesis that the polarity effect provides an estimate of local neural survival.


Subject(s)
Auditory Threshold , Cochlear Implants , Aged , Cochlear Nerve/physiology , Electric Stimulation , Electrodes , Humans , Middle Aged
16.
J Assoc Res Otolaryngol ; 18(6): 815-825, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28836061

ABSTRACT

Forward masking of a sinusoidal signal is determined not only by the masker's power spectrum but also by its phase spectrum. Specifically, when the phase spectrum is such that the output of an auditory filter centred on the signal has a highly modulated ("peaked") envelope, there is less masking than when that envelope is flat. This finding has been attributed to non-linearities, such as compression, reducing the average neural response to maskers that produce more peaked auditory filter outputs (Carlyon and Datta, J Acoust Soc Am 101:3636-3647, 1997). Here we evaluate an alternative explanation proposed by Wotcjzak and Oxenham (Wojtczak and Oxenham, J Assoc Res Otolaryngol 10:595-607, 2009). They reported a masker phase effect for 6-kHz signals when the masker components were at least an octave below the signal frequency. Wotcjzak and Oxenham argued that this effect was inconsistent with cochlear compression, and, because it did not occur at lower signal frequencies, was also inconsistent with more central compression. It was instead attributed to activation of the efferent system reducing the response to the subsequent probe. Here, experiment 1 replicated their main findings. Experiment 2 showed that the phase effect on off-frequency forward masking is similar at signal frequencies of 2 and 6 kHz, provided that one equates the number of components likely to interact within an auditory filter centred on the signal, thereby roughly equating the effect of masker phase on the peakiness of that filter output. Experiment 3 showed that for some subjects, masker phase also had a strong influence on off-frequency backward masking of the signal, and that the size of this effect correlated across subjects with that observed in forward masking. We conclude that the masker phase effect is mediated mainly by cochlear non-linearities, with a possible additional effect of more central compression. The data are not consistent with a role for the efferent system.


Subject(s)
Auditory Threshold , Hearing/physiology , Adult , Humans , Young Adult
17.
J Assoc Res Otolaryngol ; 18(5): 711-727, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28755309

ABSTRACT

Three experiments studied the extent to which cochlear implant users' spatial selectivity can be manipulated using asymmetric waveforms and tested an efficient method for comparing spatial selectivity produced by different stimuli. Experiment 1 measured forward-masked psychophysical tuning curves (PTCs) for a partial tripolar (pTP) probe. Maskers were presented on bipolar pairs separated by one unused electrode; waveforms were either symmetric biphasic ("SYM") or pseudomonophasic with the short high-amplitude phase being either anodic ("PSA") or cathodic ("PSC") on the more apical electrode. For the SYM masker, several subjects showed PTCs consistent with a bimodal excitation pattern, with discrete excitation peaks on each electrode of the bipolar masker pair. Most subjects showed significant differences between the PSA and PSC maskers consistent with greater masking by the electrode where the high-amplitude phase was anodic, but the pattern differed markedly across subjects. Experiment 2 measured masked excitation patterns for a pTP probe and either a monopolar symmetric biphasic masker ("MP_SYM") or pTP pseudomonophasic maskers where the short high-amplitude phase was either anodic ("TP_PSA") or cathodic ("TP_PSC") on the masker's central electrode. Four of the five subjects showed significant differences between the masker types, but again the pattern varied markedly across subjects. Because the levels of the maskers were chosen to produce the same masking of a probe on the same channel as the masker, it was correctly predicted that maskers that produce broader masking patterns would sound louder. Experiment 3 exploited this finding by using a single-point measure of spread of excitation to reveal significantly better spatial selectivity for TP_PSA compared to TP_PSC maskers.


Subject(s)
Cochlear Implants , Speech Perception , Aged , Humans , Loudness Perception , Middle Aged , Speech Acoustics
18.
J Assoc Res Otolaryngol ; 18(2): 387-397, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27687041

ABSTRACT

Cochlear implants (CIs) convey fundamental-frequency information using primarily temporal cues. However, temporal pitch perception in CI users is weak and, when measured using rate discrimination tasks, deteriorates markedly as the rate increases beyond 300 pulses-per-second. Rate pitch may be weak because the electrical stimulation of the surviving neural population of the implant recipient may not allow accurate coding of inter-pulse time intervals. If so, this phenomenon should prevent listeners from detecting when a pulse train is physically temporally jittered. Performance in a jitter detection task was compared to that in a rate-pitch discrimination task. Stimuli were delivered using direct stimulation in cochlear implants, on a mid-array and an apical electrode, and at two different rates (100 and 300 pps). Average performance on both tasks was worse at the higher pulse rate and did not depend on electrode. However, there was a large variability across and within listeners that did not correlate between the two tasks, suggesting that rate-pitch judgement and regularity detection are to some extent limited by task-specific processes. Simulations with filtered pulse trains presented to NH listeners yielded broadly similar results, except that, for the rate discrimination task, the difference between performance with 100- and 300-pps base rates was smaller than observed for CI users.


Subject(s)
Auditory Perception , Cochlear Implants , Aged , Aged, 80 and over , Humans , Middle Aged , Time Factors
19.
J Assoc Res Otolaryngol ; 17(4): 371-82, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27101997

ABSTRACT

Cochlear implant (CI) users have poor temporal pitch perception, as revealed by two key outcomes of rate discrimination tests: (i) rate discrimination thresholds (RDTs) are typically larger than the corresponding frequency difference limen for pure tones in normal hearing listeners, and (ii) above a few hundred pulses per second (i.e. the "upper limit" of pitch), CI users cannot discriminate further increases in pulse rate. Both RDTs at low rates and the upper limit of pitch vary across listeners and across electrodes in a given listener. Here, we compare across-electrode and across-subject variation in these two measures with the variation in performance on another temporal processing task, gap detection, in order to explore the limitations of temporal processing in CI users. RDTs were obtained for 4-5 electrodes in each of 10 Advanced Bionics CI users using two interleaved adaptive tracks, corresponding to standard rates of 100 and 400 pps. Gap detection was measured using the adaptive procedure and stimuli described by Bierer et al. (JARO 16:273-284, 2015), and for the same electrodes and listeners as for the rate discrimination measures. Pitch ranking was also performed using a mid-point comparison technique. There was a marginal across-electrode correlation between gap detection and rate discrimination at 400 pps, but neither measure correlated with rate discrimination at 100 pps. Similarly, there was a highly significant across-subject correlation between gap detection and rate discrimination at 400, but not 100 pps, and these two correlations differed significantly from each other. Estimates of low-rate sensitivity and of the upper limit of pitch, obtained from the pitch ranking experiment, correlated well with rate discrimination for the 100- and 400-pps standards, respectively. The results are consistent with the upper limit of rate discrimination sharing a common basis with gap detection. There was no evidence that this limitation also applied to rate discrimination at lower rates.


Subject(s)
Cochlear Implants , Pitch Perception , Aged , Aged, 80 and over , Humans , Middle Aged
20.
IEEE Trans Biomed Eng ; 63(4): 833-40, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26353359

ABSTRACT

OBJECTIVE: Electrically evoked compound action potentials (ECAPs) have been employed as a measure of neural activation evoked by cochlear implant (CI) stimulation. A forward-masking procedure is commonly used to reduce stimulus artefacts. This method estimates the joint neural activation produced by two electrodes-one acting as probe and the other as masker; as such, the measured ECAPs depend on the activation patterns produced by both. We describe an approach--termed panoramic ECAP ("PECAP")--that allows reconstruction of the underlying neural activation pattern of individual channels from ECAP amplitudes. METHODS: The proposed approach combines two constrained nonlinear optimization stages. PECAP was validated against simulated and physiological data from CI users. The physiological data consisted of ECAPs measured from four users of Cochlear devices. For each subject, an 18 ×18 ECAP amplitude matrix was measured using a forward-masking method. RESULTS: The results from computer simulations indicate that our approach can reliably estimate the underlying activation patterns from ECAP amplitudes even for instances of neural "dead regions" or cross-turn stimulation. The operating signal-to-noise ratio (SNR) for the proposed algorithm was 5 dB or higher, which matched well the SNR measured from human physiological data. Human ECAPs were fitted with our procedure to determine neural activation patterns. CONCLUSION: PECAP can be used to identify undesirable features of the neural activation pattern of individual CI users. SIGNIFICANCE: Our approach may have clinical application as an objective measure of electrode-to-neuron interface and may be used to devise ad hoc stimulation strategies.


Subject(s)
Cochlea/physiology , Cochlear Implants , Evoked Potentials, Auditory/physiology , Signal Processing, Computer-Assisted , Algorithms , Humans , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...