Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 58(12): 4071-97, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23685866

ABSTRACT

Image segmentation has become a vital and often rate-limiting step in modern radiotherapy treatment planning. In recent years, the pace and scope of algorithm development, and even introduction into the clinic, have far exceeded evaluative studies. In this work we build upon our previous evaluation of a registration driven segmentation algorithm in the context of 8 expert raters and 20 patients who underwent radiotherapy for large space-occupying tumours in the brain. In this work we tested four hypotheses concerning the impact of manual segmentation editing in a randomized single-blinded study. We tested these hypotheses on the normal structures of the brainstem, optic chiasm, eyes and optic nerves using the Dice similarity coefficient, volume, and signed Euclidean distance error to evaluate the impact of editing on inter-rater variance and accuracy. Accuracy analyses relied on two simulated ground truth estimation methods: simultaneous truth and performance level estimation and a novel implementation of probability maps. The experts were presented with automatic, their own, and their peers' segmentations from our previous study to edit. We found, independent of source, editing reduced inter-rater variance while maintaining or improving accuracy and improving efficiency with at least 60% reduction in contouring time. In areas where raters performed poorly contouring from scratch, editing of the automatic segmentations reduced the prevalence of total anatomical miss from approximately 16% to 8% of the total slices contained within the ground truth estimations. These findings suggest that contour editing could be useful for consensus building such as in developing delineation standards, and that both automated methods and even perhaps less sophisticated atlases could improve efficiency, inter-rater variance, and accuracy.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain/cytology , Image Processing, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Brain/pathology , Brain/radiation effects , Humans , Randomized Controlled Trials as Topic , Tomography, X-Ray Computed
2.
Phys Med Biol ; 57(1): 93-111, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22126838

ABSTRACT

Segmenting the thyroid gland in head and neck CT images is of vital clinical significance in designing intensity-modulated radiation therapy (IMRT) treatment plans. In this work, we evaluate and compare several multiple-atlas-based methods to segment this structure. Using the most robust method, we generate automatic segmentations for the thyroid gland and study their clinical applicability. The various methods we evaluate range from selecting a single atlas based on one of three similarity measures, to combining the segmentation results obtained with several atlases and weighting their contribution using techniques including a simple majority vote rule, a technique called STAPLE that is widely used in the medical imaging literature, and the similarity between the atlas and the volume to be segmented. We show that the best results are obtained when several atlases are combined and their contributions are weighted with a measure of similarity between each atlas and the volume to be segmented. We also show that with our data set, STAPLE does not always lead to the best results. Automatic segmentations generated by the combination method using the correlation coefficient (CC) between the deformed atlas and the patient volume, which is the most accurate and robust method we evaluated, are presented to a physician as 2D contours and modified to meet clinical requirements. It is shown that about 40% of the contours of the left thyroid and about 42% of the right thyroid can be used directly. An additional 21% on the left and 24% on the right require only minimal modification. The amount and the location of the modifications are qualitatively and quantitatively assessed. We demonstrate that, although challenged by large inter-subject anatomical discrepancy, atlas-based segmentation of the thyroid gland in IMRT CT images is feasible by involving multiple atlases. The results show that a weighted combination of segmentations by atlases using the CC as the similarity measure slightly outperforms standard combination methods, e.g. the majority vote rule and STAPLE, as well as methods selecting a single most similar atlas. The results we have obtained suggest that using our contours as initial contours to be edited has clinical value.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Thyroid Gland/diagnostic imaging , Tomography, X-Ray Computed/methods , Humans , Laryngeal Neoplasms/diagnostic imaging , Laryngeal Neoplasms/radiotherapy , Tongue Neoplasms/diagnostic imaging , Tongue Neoplasms/radiotherapy
3.
Phys Med Biol ; 56(14): 4557-77, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21725140

ABSTRACT

The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice similarity coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4-0.5. Similarly low DSCs have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Brain/pathology , Expert Testimony , Image Processing, Computer-Assisted/methods , Automation , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Humans , Magnetic Resonance Imaging , Radiotherapy, Intensity-Modulated , Time Factors , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL