Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Radiol Imaging Cancer ; 5(5): e230005, 2023 09.
Article in English | MEDLINE | ID: mdl-37682052

ABSTRACT

Hyperpolarized carbon 13 MRI (13C MRI) is a novel imaging approach that can noninvasively probe tissue metabolism in both normal and pathologic tissues. The process of hyperpolarization increases the signal acquired by several orders of magnitude, allowing injected 13C-labeled molecules and their downstream metabolites to be imaged in vivo, thus providing real-time information on kinetics. To date, the most important reaction studied with hyperpolarized 13C MRI is exchange of the hyperpolarized 13C signal from injected [1-13C]pyruvate with the resident tissue lactate pool. Recent preclinical and human studies have shown the role of several biologic factors such as the lactate dehydrogenase enzyme, pyruvate transporter expression, and tissue hypoxia in generating the MRI signal from this reaction. Potential clinical applications of hyperpolarized 13C MRI in oncology include using metabolism to stratify tumors by grade, selecting therapeutic pathways based on tumor metabolic profiles, and detecting early treatment response through the imaging of shifts in metabolism that precede tumor structural changes. This review summarizes the foundations of hyperpolarized 13C MRI, presents key findings from human cancer studies, and explores the future clinical directions of the technique in oncology. Keywords: Hyperpolarized Carbon 13 MRI, Molecular Imaging, Cancer, Tissue Metabolism © RSNA, 2023.


Subject(s)
Magnetic Resonance Imaging , Medical Oncology , Humans , Carbon Isotopes , Lactic Acid
3.
BJR Open ; 4(1): 20210078, 2022.
Article in English | MEDLINE | ID: mdl-36105417

ABSTRACT

Objectives: To investigate the relationship between magnetization transfer (MT) imaging and tissue macromolecules in high-grade serous ovarian cancer (HGSOC) and whether MT ratio (MTR) changes following neoadjuvant chemotherapy (NACT). Methods: This was a prospective observational study. 12 HGSOC patients were imaged before treatment. MTR was compared to quantified tissue histology and immunohistochemistry. For a subset of patients (n = 5), MT imaging was repeated after NACT. The Shapiro-Wilk test was used to assess for normality of data and Spearman's rank-order or Pearson's correlation tests were then used to compare MTR with tissue quantifications. The Wilcoxon signed-rank test was used to assess for changes in MTR after treatment. Results: Treatment-naïve tumour MTR was 21.9 ± 3.1% (mean ± S.D.). MTR had a positive correlation with cellularity, rho = 0.56 (p < 0.05) and a negative correlation with tumour volume, ρ = -0.72 (p = 0.01). MTR did not correlate with the extracellular proteins, collagen IV or laminin (p = 0.40 and p = 0.90). For those patients imaged before and after NACT, an increase in MTR was observed in each case with mean MTR 20.6 ± 3.1% (median 21.1) pre-treatment and 25.6 ± 3.4% (median 26.5) post-treatment (p = 0.06). Conclusion: In treatment-naïve HGSOC, MTR is associated with cellularity, possibly reflecting intracellular macromolecular concentration. MT may also detect the HGSOC response to NACT, however larger studies are required to validate this finding. Advances in knowledge: MTR in HGSOC is influenced by cellularity. This may be applied to assess for cell changes following treatment.

5.
Cancers (Basel) ; 14(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35053497

ABSTRACT

Differentiating aggressive clear cell renal cell carcinoma (ccRCC) from indolent lesions is challenging using conventional imaging. This work prospectively compared the metabolic imaging phenotype of renal tumors using carbon-13 MRI following injection of hyperpolarized [1-13C]pyruvate (HP-13C-MRI) and validated these findings with histopathology. Nine patients with treatment-naïve renal tumors (6 ccRCCs, 1 liposarcoma, 1 pheochromocytoma, 1 oncocytoma) underwent pre-operative HP-13C-MRI and conventional proton (1H) MRI. Multi-regional tissue samples were collected using patient-specific 3D-printed tumor molds for spatial registration between imaging and molecular analysis. The apparent exchange rate constant (kPL) between 13C-pyruvate and 13C-lactate was calculated. Immunohistochemistry for the pyruvate transporter (MCT1) from 44 multi-regional samples, as well as associations between MCT1 expression and outcome in the TCGA-KIRC dataset, were investigated. Increasing kPL in ccRCC was correlated with increasing overall tumor grade (ρ = 0.92, p = 0.009) and MCT1 expression (r = 0.89, p = 0.016), with similar results acquired from the multi-regional analysis. Conventional 1H-MRI parameters did not discriminate tumor grades. The correlation between MCT1 and ccRCC grade was confirmed within a TCGA dataset (p < 0.001), where MCT1 expression was a predictor of overall and disease-free survival. In conclusion, metabolic imaging using HP-13C-MRI differentiates tumor aggressiveness in ccRCC and correlates with the expression of MCT1, a predictor of survival. HP-13C-MRI may non-invasively characterize metabolic phenotypes within renal cancer.

6.
BJR Case Rep ; 6(1): 20190068, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32201611

ABSTRACT

Listeria monocytogenes is the third most frequent cause of bacterial meningitis and has a predilection for elderly patients and the immunosuppressed. A small number of patients with Listeria monocytogenes meningoencephalitis have previously been reported to experience stroke-like symptoms that were attributed to microabscess formation and the mass effect of collections of infection in the brain. These infections led to temporary neurological deficits that resolved with antimicrobial treatment, rather than to true strokes with permanent neurological deficits. This report discusses the case of an 80- year-old male, who was immunosuppressed with mesalazine for the treatment of Crohn's disease, and who went on to develop Listeria monocytogenes meningoencephalitis. 1 week into his admission, for antibiotic therapy, the patient began to experience new onset right upper limb weakness, nystagmus and past pointing. These symptoms were initially thought to be a complication of the infection. However, subsequent diffusion-weighted MRI revealed that the patient had more likely suffered an acute ischaemic event and a contrast-enhanced MRI performed later could not detect any abscess or large infective focus in a region that could explain the symptoms. This case report highlights the fact that ischaemic and infective pathologists may coexist in immunosuppressed Listeria patients and that clinical signs and symptoms should guide the use of appropriate imaging modalities such as MRI to clarify differentials so that ischaemia is not mistaken for the more common stroke mimic caused by infection in these patients.

7.
Proc Natl Acad Sci U S A ; 117(4): 2092-2098, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31964840

ABSTRACT

Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinomas that were estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2-), one grade 2 and one grade 3; and one grade 2 ER/PR+ HER2- invasive lobular carcinoma (ILC). Dynamic 13C MRSI was performed following injection of hyperpolarized [1-13C]pyruvate. Expression of lactate dehydrogenase A (LDHA), which catalyzes 13C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1α), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized 13C MRI in early breast cancer. Both intertumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (R = 0.903, P = 0.005) and MCT 1 (R = 0.85, P = 0.032) and HIF1α expression (R = 0.83, P = 0.043). Imaging of hyperpolarized [1-13C]pyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.


Subject(s)
Breast Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbon Isotopes/chemistry , Carbon Isotopes/metabolism , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Magnetic Resonance Imaging/instrumentation , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Symporters/genetics , Symporters/metabolism
8.
Sci Rep ; 9(1): 10742, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31341212

ABSTRACT

This study assessed the feasibility of using diffusion kurtosis imaging (DKI) as a measure of tissue heterogeneity and proliferation to predict the response of high grade serous ovarian cancer (HGSOC) to neoadjuvant chemotherapy (NACT). Seventeen patients with HGSOC were imaged at 3 T and had biopsy samples taken prior to any treatment. The patients were divided into two groups: responders and non-responders based on Response Evaluation Criteria In Solid Tumours (RECIST) criteria. The following imaging metrics were calculated: apparent diffusion coefficient (ADC), apparent diffusion (Dapp) and apparent kurtosis (Kapp). Tumour cellularity and proliferation were quantified using histology and Ki-67 immunohistochemistry. Mean Kapp before therapy was higher in responders compared to non-responders: 0.69 ± 0.13 versus 0.51 ± 0.11 respectively, P = 0.02. Tumour cellularity correlated positively with Kapp (rho = 0.50, P = 0.04) and negatively with both ADC (rho = -0.72, P = 0.001) and Dapp (rho = -0.80, P < 0.001). Ki-67 expression correlated with Kapp (rho = 0.53, P = 0.03) but not with ADC or Dapp. In conclusion, Kapp was found to be a potential predictive biomarker of NACT response in HGSOC, which suggests that DKI is a promising clinical tool for use oncology and radiology that should be evaluated further in future larger studies.


Subject(s)
Cystadenocarcinoma, Serous/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Ovarian Neoplasms/diagnostic imaging , Adult , Aged , Aged, 80 and over , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/pathology , Environmental Biomarkers , Female , Humans , Middle Aged , Neoadjuvant Therapy/methods , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovary/diagnostic imaging , Ovary/pathology , Treatment Outcome
9.
Eur J Radiol Open ; 6: 156-162, 2019.
Article in English | MEDLINE | ID: mdl-31032385

ABSTRACT

The aim of this study was to assess the feasibility of rapid sodium MRI (23Na-MRI) for the imaging of peritoneal cancer deposits in high grade serous ovarian cancer (HGSOC) and to evaluate the relationship of 23Na-MRI with tumour cellularity. 23Na-MRI was performed at 3 T on twelve HGSOC patients using a 3D-cones acquisition technique. Tumour biopsies specimens were collected after imaging and cellularity was measured from histology. Total 23Na-MRI scan time for each patient was approximately 11 min. At an isotropic resolution of 5.6 mm, signal-to-noise ratios (SNRs) of 82.2 ± 15.3 and 15.1 ± 7.1 (mean ± standard deviation) were achieved for imaging of tumour tissue sodium concentration (TSC) and intracellular weighted sodium concentration (IWS) respectively. Tumour TSC and IWS concentrations were: 56.8 ± 19.1 mM and 30.8 ± 9.2 mM respectively and skeletal muscle TSC and IWS concentrations were 33.2 ± 16.3 mM and 20.5 ± 9.9 mM respectively. There were significant sodium concentration differences between cancer and skeletal muscle, Wilcoxon signed-rank test, P < 0.001 for TSC and P = 0.01 for IWS imaging. Tumour cellularity displayed a strong negative correlation with TSC, Spearman's rho = -0.92, P < 0.001, but did not correlate with IWS. This study demonstrates that 23Na-MRI using 3D-cones can rapidly assess sodium concentration in peritoneal deposits of HGSOC and that TSC may serve as a biomarker of tumour cellularity.

10.
Neuroimage ; 189: 171-179, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30639333

ABSTRACT

Hyperpolarized 13C Magnetic Resonance Imaging (13C-MRI) provides a highly sensitive tool to probe tissue metabolism in vivo and has recently been translated into clinical studies. We report the cerebral metabolism of intravenously injected hyperpolarized [1-13C]pyruvate in the brain of healthy human volunteers for the first time. Dynamic acquisition of 13C images demonstrated 13C-labeling of both lactate and bicarbonate, catalyzed by cytosolic lactate dehydrogenase and mitochondrial pyruvate dehydrogenase respectively. This demonstrates that both enzymes can be probed in vivo in the presence of an intact blood-brain barrier: the measured apparent exchange rate constant (kPL) for exchange of the hyperpolarized 13C label between [1-13C]pyruvate and the endogenous lactate pool was 0.012 ±â€¯0.006 s-1 and the apparent rate constant (kPB) for the irreversible flux of [1-13C]pyruvate to [13C]bicarbonate was 0.002 ±â€¯0.002 s-1. Imaging also revealed that [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate were significantly higher in gray matter compared to white matter. Imaging normal brain metabolism with hyperpolarized [1-13C]pyruvate and subsequent quantification, have important implications for interpreting pathological cerebral metabolism in future studies.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Carbon Isotopes , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Pyruvic Acid , Adult , Female , Humans , Male
11.
J Neurol Sci ; 387: 111-114, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29571845

ABSTRACT

Sodium MRI (23Na-MRI) has been used to non-invasively quantify tissue sodium but has been limited by low spatial resolution. Here we demonstrate for the first time that high resolution 23Na-MRI reveals the spatial heterogeneity of sodium concentration within a multiple sclerosis (MS) lesion. A patient with treatment-naïve relapsing-remitting MS and a ring-enhancing lesion was imaged using 23Na-MRI. The periphery of the lesion demonstrated an elevated total sodium content compared to the normal appearing white and grey matter (p<0.01), as well as a heterogeneous distribution of both the total tissue sodium concentration and the intracellular-weighted sodium concentration.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/metabolism , Sodium/metabolism , Adult , Analysis of Variance , Brain/drug effects , Disability Evaluation , Female , Humans , Imaging, Three-Dimensional , Sodium Radioisotopes/pharmacokinetics
12.
Br J Radiol ; 91(1085): 20170688, 2018 May.
Article in English | MEDLINE | ID: mdl-29293376

ABSTRACT

Glucose metabolism in tumours is reprogrammed away from oxidative metabolism, even in the presence of oxygen. Non-invasive imaging techniques can probe these alterations in cancer metabolism providing tools to detect tumours and their response to therapy. Although Positron Emission Tomography with (18F)2-fluoro-2-deoxy-D-glucose (18F-FDG PET) is an established clinical tool to probe cancer metabolism, it has poor spatial resolution and soft tissue contrast, utilizes ionizing radiation and only probes glucose uptake and phosphorylation and not further downstream metabolism. Magnetic Resonance Spectroscopy (MRS) has the capability to non-invasively detect and distinguish molecules within tissue but has low sensitivity and can only detect selected nuclei. Dynamic Nuclear Polarization (DNP) is a technique which greatly increases the signal-to-noise ratio (SNR) achieved with MR by significantly increasing nuclear spin polarization and this method has now been translated into human imaging. This review provides a brief overview of this process, also termed Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging (HP 13C-MRSI), its applications in preclinical imaging, an outline of the current human trials that are ongoing, as well as future potential applications in oncology.


Subject(s)
Carbon Isotopes , Glucose/metabolism , Magnetic Resonance Spectroscopy/methods , Neoplasms/metabolism , Radiopharmaceuticals , Humans , Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...