Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 249: 116381, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39067280

ABSTRACT

Fluorouracil is among the most used antimetabolite drugs for the chemotherapeutic treatment of various types of gastrointestinal malignancies. Dihydropyrimidine dehydrogenase (DPYD) genotyping prior to fluorouracil treatment is considered standard practice in most European countries. Yet, current pre-therapeutic DPYD genotyping procedures do not identify all dihydropyrimidine dehydrogenase (DPD)-deficient patients. Alternatively, DPD activity can be estimated by determining the DPD phenotype by quantification of plasma concentrations of the endogenous uracil and thymine concentrations and their respective metabolites dihydrouracil (DHU) and dihydrothymine (DHT). Liquid chromatography - mass spectrometry (LC-MS) detection is currently considered as the most adequate method for quantification of low-molecular weight molecules, although the sample preparation method is highly critical for analytical outcome. It was hypothesized that during protein precipitation, the recovery of the molecule of interest highly depends on the choice of precipitation agent and the extent of protein binding in plasma. In this work, the effect of protein precipitation using acetonitrile (ACN) compared to strong acid perchloric acid (PCA) on the recovery of uracil, thymine, DHU and DHT is demonstrated. Upon the analysis of plasma samples, PCA precipitation showed higher concentrations of uracil and thymine as compared to ACN precipitation. Using ultrafiltration, it was shown that uracil and thymine are significantly (60-65 %) bound to proteins compared to DHU and DHT. This shows that before harmonized cut-off levels of DPD phenotyping can be applied in clinical practice, the analytical methodology requires extensive further optimization.


Subject(s)
Dihydrouracil Dehydrogenase (NADP) , Phenotype , Protein Binding , Thymine , Uracil , Thymine/metabolism , Uracil/analogs & derivatives , Uracil/metabolism , Uracil/blood , Dihydrouracil Dehydrogenase (NADP)/metabolism , Dihydrouracil Dehydrogenase (NADP)/genetics , Humans , Chromatography, Liquid/methods , Fluorouracil/metabolism , Fluorouracil/blood , Genotype , Dihydropyrimidine Dehydrogenase Deficiency/metabolism , Tandem Mass Spectrometry/methods
2.
Target Oncol ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085452

ABSTRACT

BACKGROUND: Atezolizumab is a programmed death-ligand 1 (PD-L1) checkpoint inhibitor for the treatment of different forms of cancer. The subcutaneous formulation of atezolizumab has recently received approval. However, treatment with atezolizumab continues to be expensive, and the number of patients needing treatment with this drug continues to increase. OBJECTIVE: We propose two alternative dosing regimens for subcutaneous atezolizumab to reduce drug expenses while ensuring effective exposure; one may be directly implemented in the clinic. PATIENTS AND METHODS: We developed two alternative dose interval prolongation strategies based on pharmacokinetic modeling and simulation. The first dosing regimen was based on patients' weight while maintaining equivalent systemic drug exposure by adhering to Food and Drug Administration (FDA) guidelines for in silico dose adjustments. The second dosing regimen aimed to have a minimum atezolizumab concentration above the 6 µg/mL threshold, associated with 95% intratumoral PD-L1 receptor saturation for at least 95% of all patients. RESULTS: We found that, for the weight-based dosing regimen, the approved 3-week dosing interval could be extended to 5 weeks for patients < 50 kg and 4 weeks for patients weighing 50-65 kg. Besides improving patient convenience, these alternative dosing intervals led to a predicted 7% and 12% cost reduction for either the USA or European population. For the second dosing regimen, we predicted that a 6-week dosing interval would result in 95% of the patients above the 6 µg/mL threshold while reducing costs by 50%. CONCLUSIONS: We have developed and evaluated two alternative dosing regimens that resulted in a cost reduction. Our weight-based dosing regimen can be directly implemented and complies with FDA guidelines for alternative dosing regimens of PD-L1 inhibitors. For the more progressive alternative dosing regimen aimed at the intratumoral PD-L1 receptor threshold, further evidence on efficacy and safety is needed before implementation.

3.
Eur J Surg Oncol ; 50(9): 108487, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38905732

ABSTRACT

BACKGROUND: Palliative systemic therapy alternated with electrostatic precipitation oxaliplatin-based pressurized intraperitoneal aerosol chemotherapy (ePIPAC) has never been prospectively investigated in patients with unresectable colorectal peritoneal metastases (CPM). The CRC-PIPAC-II study aimed to assess safety, feasibility and efficacy of such bidirectional therapy. METHODS: This two-center, single-arm, phase II trial enrolled chemotherapy-naïve patients to undergo three treatment cycles, consisting of systemic therapy (CAPOX, FOLFOX, FOLFIRI, or FOLFOXIRI, all with bevacizumab) and oxaliplatin-based ePIPAC (92 mg/m2) with intravenous leucovorin (20 mg/m2) and 5-fluorouracil (400 mg/m2). Primary outcome were major treatment-related adverse events. Secondary outcomes included minor events, tumor response, progression-free survival (PFS) and overall survival (OS). RESULTS: Twenty patients completed 52 treatment cycles. Fifteen major events occurred in 7 patients (35 %): 5 events (33 %) related to systemic therapy; 5 (33 %) related to ePIPAC; and 5 (33 %) were biochemical events. No treatment-related deaths occurred. All patients experienced minor events, mostly abdominal pain, nausea and peripheral sensory neuropathy. After treatment, radiological, pathological, cytological, and biochemical response was observed in 0 %, 88 %, 38 %, and 31 % of patients respectively. Curative surgery was achieved in one patient. Median PFS was 10.0 months (95 % confidence interval [CI] 8.0-13.0) and median OS was 17.5 months (95 % CI 13.0-not reached). CONCLUSIONS: Combining palliative systemic therapy with oxaliplatin-based ePIPAC in patients with unresectable CPM was feasible and showed an acceptable safety profile. Treatment-induced response and survival are promising, yet further research is required to determine the additional value of ePIPAC to systemic therapy.

SELECTION OF CITATIONS
SEARCH DETAIL